scholarly journals Signature based on immune-related LncRNA can predict overall survival of osteosarcoma patients

2020 ◽  
Author(s):  
Longqing Li ◽  
Lianghao Zhang ◽  
Manhas Adbul Khader ◽  
Yan Zhang ◽  
Xinchang Lu ◽  
...  

Abstract Background: Osteosarcoma is a malignant bone tumor common in children and adolescents. Metastatic status remains the most important guideline for classifying patients and making clinical decisions. Despite many efforts, newly diagnosed patients receive the same therapy that patients have received over the last 4 decades. With the development of high-throughput sequencing technology and the rise of immunotherapy, it is necessary to deeply explore the immune molecular mechanism of osteosarcoma. Methods: We obtained RNA-seq data and clinical information of osteosarcoma patients from TCGA database and TARGET database. With the help of co-expression analysis we identified immune-related lncRNA and then by means of univariate Cox regression analysis prognostic-related lncRNA was screened out. And also by using least absolute shrinkage and selection operator regression method a model based on immune-related lncRNA was constructed. The differences in overall survival, immune infiltration, immune checkpoint gene expression, and tumor microenvironmental immunity type between the two groups were evaluated. Results: We constructed a signature consisting of 13 lncRNA. Our results show that signatures can reliably predict the overall survival of patients with osteosarcoma and can bring net clinical benefits. Further more, the signatures can be used for further risk stratification of the metastasis patients. Patients in the low-risk group had higher immune cell infiltration and immune checkpoint gene expression. The results from gene set variation analysis show that patients in low-risk group are closely related to immune-related pathways when compared with patients in high-risk group. Finally, patients in the low-risk group are more likely to be classified as TMIT I and hence more likely to benefit from immunotherapy. Conclusion: Our signature may be a reliable marker for predicting the overall survival of patients with osteosarcoma. Keywords: Osteosarcoma, TCGA, LncRNA, Tumor immunology, Prognosis.

2020 ◽  
Author(s):  
Longqing Li ◽  
Lianghao Zhang ◽  
Manhas Adbul Khader ◽  
Yan Zhang ◽  
Xinchang Lu ◽  
...  

Abstract Background: Osteosarcoma is a malignant bone tumor common in children and adolescents. Metastatic status remains the most important guideline for classifying patients and making clinical decisions. Despite many efforts, newly diagnosed patients receive the same therapy that patients have received over the last 4 decades. With the development of high-throughput sequencing technology and the rise of immunotherapy, it is necessary to deeply explore the immune molecular mechanism of osteosarcoma.Methods: We obtained RNA-seq data and clinical information of osteosarcoma patients from TCGA database and TARGET database. With the help of co-expression analysis we identified immune-related lncRNA and then by means of univariate Cox regression analysis prognostic-related lncRNA was screened out. And also by using least absolute shrinkage and selection operator regression method a model based on immune-related lncRNA was constructed. The differences in overall survival, immune infiltration, immune checkpoint gene expression, and tumor microenvironmental immunity type between the two groups were evaluated.Results: We constructed a signature consisting of 13 lncRNA. Our results show that signatures can reliably predict the overall survival of patients with osteosarcoma and can bring net clinical benefits. Further more, the signatures can be used for further risk stratification of the metastasis patients. Patients in the low-risk group had higher immune cell infiltration and immune checkpoint gene expression. The results from gene set variation analysis show that patients in low-risk group are closely related to immune-related pathways when compared with patients in high-risk group. Finally, patients in the low-risk group are more likely to be classified as TMIT I and hence more likely to benefit from immunotherapy.Conclusion: Our signature may be a reliable marker for predicting the overall survival of patients with osteosarcoma.


2020 ◽  
Author(s):  
Junhao Yin ◽  
Xiaoli Zeng ◽  
Zexin Ai ◽  
Miao Yu ◽  
Yang'ou Wu ◽  
...  

Abstract Background: Oral squamous cell carcinoma (OSCC) is a life-threatening disease that emerged as a major international health concern, associated with poor prognosis and the absence of specific biomarkers. Studies have shown that the ferroptosis-related genes (FRGs) can be used as tumor prognostic markers. However, FRGs’ prognostic value in OSCC needs further exploration. Our aim was to construct a novel FRG signature for overall survival (OS) prediction in OSCC patients and explore its role in immunotherapy.Methods: In our study, gene expression profile and clinical data of OSCC patients were collected from a public domain. FRGs were available from the FerrDb database. We performed univariate and multivariate Cox regression analyses to construct a multigene signature. The Kaplan-Meier (K-M) and receiver operating characteristic (ROC) methods were utilized to test the effectiveness of the FRG signature. A differential gene expression analysis was performed by the limma R package, followed by functional enrichment analyses. CIBERSORT was applied to analyze the tumor microenvironment (TME). Finally, the expression of human leukocyte antigen (HLA) and immune checkpoint molecules were analyzed to confirm the sensitivity of immunotherapy.Results: A total of 103 FRGs, expressed in OSCC (FRGs-OSCC), were identified from the two datasets by the Venn analysis. The Cox regression analysis identified 5 FRGs-OSCC that were associated with overall survival (all P < 0.01). The FRGs-OSCC risk model was established to classify patients into high risk and low risk groups. Compared with the low risk group, the survival time of the high-risk group was significantly reduced (P < 0.001). According to the multivariate Cox regression analyses, the risk score acted as an independent predictor for OS (HR > 1, P < 0.001). The accuracy of the FRGs-OSCC risk predictive model was confirmed by ROC curve analysis. The results of the Kyoto Encyclopedia of Genes and Genomes (KEGG) showed significant enrichment of immune-related pathways, and a difference in tumor microenvironment between the two groups. The low risk group had the characteristics of higher expression of HLA and immune checkpoints (IDO1, LAG3, PDCD1 and TIGHT), a lower tumor purity and a higher infiltration of immune cells, indicating a more sensitive response to immunotherapy.Conclusions: The novel FRGs-OSCC risk score system can be used to predict OSCC prognosis. Ferroptosis targeting may be a therapeutic option for OSCC.


Author(s):  
Dongyan Zhao ◽  
Xizhen Sun ◽  
Sidan Long ◽  
Shukun Yao

AbstractAimLong non-coding RNAs (lncRNAs) have been identified to regulate cancers by controlling the process of autophagy and by mediating the post-transcriptional and transcriptional regulation of autophagy-related genes. This study aimed to investigate the potential prognostic role of autophagy-associated lncRNAs in colorectal cancer (CRC) patients.MethodsLncRNA expression profiles and the corresponding clinical information of CRC patients were collected from The Cancer Genome Atlas (TCGA) database. Based on the TCGA dataset, autophagy-related lncRNAs were identified by Pearson correlation test. Univariate Cox regression analysis and the least absolute shrinkage and selection operator analysis (LASSO) Cox regression model were performed to construct the prognostic gene signature. Gene set enrichment analysis (GSEA) was used to further clarify the underlying molecular mechanisms.ResultsWe obtained 210 autophagy-related genes from the whole dataset and found 1187 lncRNAs that were correlated with the autophagy-related genes. Using Univariate and LASSO Cox regression analyses, eight lncRNAs were screened to establish an eight-lncRNA signature, based on which patients were divided into the low-risk and high-risk group. Patients’ overall survival was found to be significantly worse in the high-risk group compared to that in the low-risk group (log-rank p = 2.731E-06). ROC analysis showed that this signature had better prognostic accuracy than TNM stage, as indicated by the area under the curve. Furthermore, GSEA demonstrated that this signature was involved in many cancer-related pathways, including TGF-β, p53, mTOR and WNT signaling pathway.ConclusionsOur study constructed a novel signature from eight autophagy-related lncRNAs to predict the overall survival of CRC, which could assistant clinicians in making individualized treatment.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jinzhi Lai ◽  
Hainan Yang ◽  
Tianwen Xu

Abstract Background Malignant mesothelioma (MM) is a relatively rare and highly lethal tumor with few treatment options. Thus, it is important to identify prognostic markers that can help clinicians diagnose mesothelioma earlier and assess disease activity more accurately. Alternative splicing (AS) events have been recognized as critical signatures for tumor diagnosis and treatment in multiple cancers, including MM. Methods We systematically examined the AS events and clinical information of 83 MM samples from TCGA database. Univariate Cox regression analysis was used to identify AS events associated with overall survival. LASSO analyses followed by multivariate Cox regression analyses were conducted to construct the prognostic signatures and assess the accuracy of these prognostic signatures by receiver operating characteristic (ROC) curve and Kaplan–Meier survival analyses. The ImmuCellAI and ssGSEA algorithms were used to assess the degrees of immune cell infiltration in MM samples. The survival-related splicing regulatory network was established based on the correlation between survival-related AS events and splicing factors (SFs). Results A total of 3976 AS events associated with overall survival were identified by univariate Cox regression analysis, and ES events accounted for the greatest proportion. We constructed prognostic signatures based on survival-related AS events. The prognostic signatures proved to be an efficient predictor with an area under the curve (AUC) greater than 0.9. Additionally, the risk score based on 6 key AS events proved to be an independent prognostic factor, and a nomogram composed of 6 key AS events was established. We found that the risk score was significantly decreased in patients with the epithelioid subtype. In addition, unsupervised clustering clearly showed that the risk score was associated with immune cell infiltration. The abundances of cytotoxic T (Tc) cells, natural killer (NK) cells and T-helper 17 (Th17) cells were higher in the high-risk group, whereas the abundances of induced regulatory T (iTreg) cells were lower in the high-risk group. Finally, we identified 3 SFs (HSPB1, INTS1 and LUC7L2) that were significantly associated with MM patient survival and then constructed a regulatory network between the 3 SFs and survival-related AS to reveal potential regulatory mechanisms in MM. Conclusion Our study provided a prognostic signature based on 6 key events, representing a better effective tumor-specific diagnostic and prognostic marker than the TNM staging system. AS events that are correlated with the immune system may be potential therapeutic targets for MM.


Author(s):  
Jing Zhu ◽  
Yong Mou ◽  
Shenglan Ye ◽  
Hongling Hu ◽  
Rujuan Wang ◽  
...  

Given the importance of solute carrier (SLC) proteins in maintaining cellular metabolic homeostasis and that their dysregulation contributes to cancer progression, here we constructed a robust SLC family signature for lung adenocarcinoma (LUAD) patient stratification. Transcriptomic profiles and relevant clinical information of LUAD patients were downloaded from the TCGA and GEO databases. SLC family genes differentially expressed between LUAD tissues and adjacent normal tissues were identified using limma in R. Of these, prognosis-related SLC family genes were further screened out and used to construct a novel SLC family-based signature in the training cohort. The accuracy of the prognostic signature was assessed in the testing cohort, the entire cohort, and the external GSE72094 cohort. Correlations between the prognostic signature and the tumor immune microenvironment and immune cell infiltrates were further explored. We found that seventy percent of SLC family genes (279/397) were differentially expressed between LUAC tissues and adjacent normal. Twenty-six genes with p-values &lt; 0.05 in univariate Cox regression analysis and Kaplan-Meier survival analysis were regarded as prognosis-related SLC family genes, six of which were used to construct a prognostic signature for patient classification into high- and low-risk groups. Kaplan-Meier survival analysis in all internal and external cohorts revealed a better overall survival for patients in the low-risk group than those in the high-risk group. Univariate and multivariate Cox regression analyses indicated that the derived risk score was an independent prognostic factor for LUAD patients. Moreover, a nomogram based on the six-gene signature and clinicopathological factors was developed for clinical application. High-risk patients had lower stromal, immune, and ESTIMATE scores and higher tumor purities than those in the low-risk group. The proportions of infiltrating naive CD4 T cells, activated memory CD4 T cells, M0 macrophages, resting dendritic cells, resting mast cells, activated mast cells, and eosinophils were significantly different between the high- and low-risk prognostic groups. In all, the six-gene SLC family signature is of satisfactory accuracy and generalizability for predicting overall survival in patients with LUAD. Furthermore, this prognostics signature is related to tumor immune status and distinct immune cell infiltrates in the tumor microenvironment.


2021 ◽  
Vol 18 (5) ◽  
pp. 6709-6723
Author(s):  
Xin Yu ◽  
◽  
Jun Liu ◽  
Ruiwen Xie ◽  
Mengling Chang ◽  
...  

<abstract> <sec><title>Objective</title><p>We aimed to construct a novel prognostic model based on N6-methyladenosine (m6A)-related autophagy genes for predicting the prognosis of lung squamous cell carcinoma (LUSC).</p> </sec> <sec><title>Methods</title><p>Gene expression profiles and clinical information of Patients with LUSC were downloaded from The Cancer Genome Atlas (TCGA) database. In addition, m6A- and autophagy-related gene profiles were obtained from TCGA and Human Autophagy Database, respectively. Pearson correlation analysis was performed to identify the m6A-related autophagy genes, and univariate Cox regression analysis was conducted to screen for genes associated with prognosis. Based on these genes, LASSO Cox regression analysis was used to construct a prognostic model. The corresponding prognostic score (PS) was calculated, and patients with LUSC were assigned to low- and high-risk groups according to the median PS value. An independent dataset (GSE37745) was used to validate the prognostic ability of the model. CIBERSORT was used to calculate the differences in immune cell infiltration between the high- and low-risk groups.</p> </sec> <sec><title>Results</title><p>Seven m6A-related autophagy genes were screened to construct a prognostic model: <italic>CASP4</italic>, <italic>CDKN1A</italic>, <italic>DLC1</italic>, <italic>ITGB1</italic>, <italic>PINK1</italic>, <italic>TP63</italic>, and <italic>EIF4EBP1</italic>. In the training and validation sets, patients in the high-risk group had worse survival times than those in the low-risk group; the areas under the receiver operating characteristic curves were 0.958 and 0.759, respectively. There were differences in m6A levels and immune cell infiltration between the high- and low-risk groups.</p> </sec> <sec><title>Conclusions</title><p>Our prognostic model of the seven m6A-related autophagy genes had significant predictive value for LUSC; thus, these genes may serve as autophagy-related therapeutic targets in clinical practice.</p> </sec> </abstract>


2020 ◽  
Author(s):  
Andi Ma ◽  
Yukai Sun ◽  
Racheal O. Ogbodu ◽  
Ling Xiao ◽  
Haibing Deng ◽  
...  

Abstract Background: It is well known that long non-coding RNAs (lncRNAs) play a vital role in cancer. We aimed to explore the prognostic value of potential immune-related lncRNAs in hepatocellular carcinoma (HCC). Methods: Validated the established lncRNA signature of 343 patients with HCC from The Cancer Genome Atlas (TCGA) and 81 samples from Gene Expression Omnibus (GEO). Immune-related lncRNAs for HCC prognosis were evaluated using Cox regression and Least Absolute Shrinkage and Selection Operator (LASSO) analyses. LASSO analysis was performed to calculate a risk score formula to explore the difference in overall survival between high- and low-risk groups in TCGA, which was verified using GEO, Gene Ontology (GO), and pathway-enrichment analysis. These analyses were used to identify the function of screened genes and construct a co-expression network of these genes. Results: Using computational difference algorithms and lasso Cox regression analysis, the differentially expressed and survival-related immune-related genes (IRGs) among patients with HCC were established as five novel immune-related lncRNA signatures (AC099850.3, AL031985.3, PRRT3-AS1, AC023157.3, MSC-AS1). Patients in the low‐risk group showed significantly better survival than patients in the high‐risk group ( P = 3.033e−05). The signature identified can be an effective prognostic factor to predict patient survival. The nomogram showed some clinical net benefits predicted by overall survival. In order to explore its underlying mechanism, several methods of enrichment were elucidated using Gene Set Enrichment Analysis. Conclusion: Identifying five immune-related lncRNA signatures has important clinical implications for predicting patient outcome and guiding tailored therapy for patients with HCC with further prospective validation.


2021 ◽  
Author(s):  
Dandong Luo ◽  
Qiang Tao ◽  
HuiJuan Jiang ◽  
JunLing Zhu ◽  
Ning Zhang ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is characterized by widespread epidemiology and extraordinary heterogeneity, with challenging prognosis prediction. Ferroptosis is a regulatory cell death driven by iron-dependent lipid peroxidation. The main aim of this study was to determine the predictive value of ferroptosis-related genes (FRGs) in HCC. Methods Herein, the data of HCC patients were downloaded from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) public databases. In the ICGC cohort, a multigenic signature was constructed using the LASSO Cox regression model. Next, patients in the TCGA cohort were used to verify the reliability of the model. Results Results showed that 30.07% of the differentially expressed genes (DEGs) in the ICGC cohort were associated with ferroptosis. Among them, 35 genes were identified as intersected genes associated with overall survival in both cohorts. Moreover, an 8-gene signature for prediction of HCC patients was constructed and the patients were divided it into low-risk and high-risk groups. The results indicated that the overall survival (OS) of patients in the high-risk group was lower than OS of patients in the low-risk group (P < 0.001 in both cohorts). Multivariate Cox regression analysis indicated that the risk score was an independent predictor of OS (HR > 1, P < 0.001). Receiver operating curves (ROC) demonstrated the predictive power of the signature. Furthermore, functional enrichment analysis revealed the existence of significantly correlated immune-related pathways, and their immune states were different between groups. Conclusions In summary, the genetic signature described in this study was associated with ferroptosis and it can be used to predict the prognosis of HCC. Therefore, targeted treatment of ferroptosis may be an alternative treatment option for HCC.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11074
Author(s):  
Jin Duan ◽  
Youming Lei ◽  
Guoli Lv ◽  
Yinqiang Liu ◽  
Wei Zhao ◽  
...  

Background Lung adenocarcinoma (LUAD) is the most commonhistological lung cancer subtype, with an overall five-year survivalrate of only 17%. In this study, we aimed to identify autophagy-related genes (ARGs) and develop an LUAD prognostic signature. Methods In this study, we obtained ARGs from three databases and downloaded gene expression profiles from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. We used TCGA-LUAD (n = 490) for a training and testing dataset, and GSE50081 (n = 127) as the external validation dataset.The least absolute shrinkage and selection operator (LASSO) Cox and multivariate Cox regression models were used to generate an autophagy-related signature. We performed gene set enrichment analysis (GSEA) and immune cell analysis between the high- and low-risk groups. A nomogram was built to guide the individual treatment for LUAD patients. Results We identified a total of 83 differentially expressed ARGs (DEARGs) from the TCGA-LUAD dataset, including 33 upregulated DEARGs and 50 downregulated DEARGs, both with thresholds of adjusted P < 0.05 and |Fold change| > 1.5. Using LASSO and multivariate Cox regression analyses, we identified 10 ARGs that we used to build a prognostic signature with areas under the curve (AUCs) of 0.705, 0.715, and 0.778 at 1, 3, and 5 years, respectively. Using the risk score formula, the LUAD patients were divided into low- or high-risk groups. Our GSEA results suggested that the low-risk group were enriched in metabolism and immune-related pathways, while the high-risk group was involved in tumorigenesis and tumor progression pathways. Immune cell analysis revealed that, when compared to the high-risk group, the low-risk group had a lower cell fraction of M0- and M1- macrophages, and higher CD4 and PD-L1 expression levels. Conclusion Our identified robust signature may provide novel insight into underlying autophagy mechanisms as well as therapeutic strategies for LUAD treatment.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Yao Peng ◽  
Hui Wang ◽  
Qi Huang ◽  
Jingjing Wu ◽  
Mingjun Zhang

Abstract Background Long noncoding RNAs (lncRNAs) are important regulators of gene expression and can affect a variety of physiological processes. Recent studies have shown that immune-related lncRNAs play an important role in the tumour immune microenvironment and may have potential application value in the treatment and prognosis prediction of tumour patients. Epithelial ovarian cancer (EOC) is characterized by a high incidence and poor prognosis. However, there are few studies on immune-related lncRNAs in EOC. In this study, we focused on immune-related lncRNAs associated with survival in EOC. Methods We downloaded mRNA data for EOC patients from The Cancer Genome Atlas (TCGA) database and mRNA data for normal ovarian tissue from the Genotype-Tissue Expression (GTEx) database and identified differentially expressed genes through differential expression analysis. Immune-related lncRNAs were obtained through intersection and coexpression analysis of differential genes and immune-related genes from the Immunology Database and Analysis Portal (ImmPort). Samples in the TCGA EOC cohort were randomly divided into a training set, validation set and combination set. In the training set, Cox regression analysis and LASSO regression were performed to construct an immune-related lncRNA signature. Kaplan–Meier survival analysis, time-dependent ROC curve analysis, Cox regression analysis and principal component analysis were performed for verification in the training set, validation set and combination set. Further studies of pathways and immune cell infiltration were conducted through Gene Set Enrichment Analysis (GSEA) and the Timer data portal. Results An immune-related lncRNA signature was identified in EOC, which was composed of six immune-related lncRNAs (KRT7-AS, USP30-AS1, AC011445.1, AP005205.2, DNM3OS and AC027348.1). The signature was used to divide patients into high-risk and low-risk groups. The overall survival of the high-risk group was lower than that of the low-risk group and was verified to be robust in both the validation set and the combination set. The signature was confirmed to be an independent prognostic biomarker. Principal component analysis showed the different distribution patterns of high-risk and low-risk groups. This signature may be related to immune cell infiltration (mainly macrophages) and differential expression of immune checkpoint-related molecules (PD-1, PDL1, etc.). Conclusions We identified and established a prognostic signature of immune-related lncRNAs in EOC, which will be of great value in predicting the prognosis of clinical patients and may provide a new perspective for immunological research and individualized treatment in EOC.


Sign in / Sign up

Export Citation Format

Share Document