scholarly journals Mitotic arrest affects clustering of tumor cells

2020 ◽  
Author(s):  
Julia Bonnet ◽  
Lise Rigal ◽  
Odile Mondesert ◽  
Renaud Morin ◽  
Gaelle Corsaut ◽  
...  

Abstract BackgroundCancer cell aggregation is a key process involved in the formation of tumor cell clusters. It has recently been shown that clusters of circulating tumor cells (CTCs) have an increased metastatic potential compared to isolated circulating tumor cells. Several widely used chemotherapeutic agents that target the cytoskeleton microtubules and cause cell cycle arrest at mitosis have been reported to modulate CTC number or the size of CTC clusters.ResultsIn this study, we investigated in vitro the impact of mitotic arrest on the ability of breast tumor cells to form clusters. By using live imaging and quantitative image analysis, we found that MCF-7 cancer cell aggregation is compromised upon incubation with paclitaxel or vinorelbine, two chemotherapeutic drugs that target microtubules. In line with these results, we observed that MCF-7 breast cancer cells experimentally synchronized and blocked in metaphase aggregated poorly and formed loose clusters. To monitor clustering at the single-cell scale, we next developed and validated an in vitro assay based on live video-microscopy and custom-designed micro-devices. The study of cluster formation from MCF-7 cells that express the fluorescent marker LifeAct-mCherry using this new assay allowed showing that substrate anchorage-independent clustering of MCF-7 cells was associated with the formation of actin-dependent highly dynamic cell protrusions. Metaphase-synchronized and blocked cells did not display such protrusions, and formed very loose clusters that failed to compact.ConclusionsAltogether, our results suggest that mitotic arrest induced by microtubule-targeting anticancer drugs prevents cancer cell clustering and therefore, could reduce the metastatic potential of circulating tumor cells.

2021 ◽  
Author(s):  
Julia Bonnet ◽  
Lise Rigal ◽  
Odile Mondesert ◽  
Renaud Morin ◽  
Gaelle Corsaut ◽  
...  

Abstract Background Cancer cell aggregation is a key process involved in the formation of tumor cell clusters. It has recently been shown that clusters of circulating tumor cells (CTCs) have an increased metastatic potential compared to isolated circulating tumor cells. Several widely used chemotherapeutic agents that target the cytoskeleton microtubules and cause cell cycle arrest at mitosis have been reported to modulate CTC number or the size of CTC clusters. Results In this study, we investigated in vitro the impact of mitotic arrest on the ability of breast tumor cells to form clusters. By using live imaging and quantitative image analysis, we found that MCF-7 cancer cell aggregation is compromised upon incubation with paclitaxel or vinorelbine, two chemotherapeutic drugs that target microtubules. In line with these results, we observed that MCF-7 breast cancer cells experimentally synchronized and blocked in metaphase aggregated poorly and formed loose clusters. To monitor clustering at the single-cell scale, we next developed and validated an in vitro assay based on live video-microscopy and custom-designed micro-devices. The study of cluster formation from MCF-7 cells that express the fluorescent marker LifeAct-mCherry using this new assay allowed showing that substrate anchorage-independent clustering of MCF-7 cells was associated with the formation of actin-dependent highly dynamic cell protrusions. Metaphase-synchronized and blocked cells did not display such protrusions, and formed very loose clusters that failed to compact. Conclusions Altogether, our results suggest that mitotic arrest induced by microtubule-targeting anticancer drugs prevents cancer cell clustering and therefore, could reduce the metastatic potential of circulating tumor cells.


Cell Division ◽  
2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Julia Bonnet ◽  
Lise Rigal ◽  
Odile Mondesert ◽  
Renaud Morin ◽  
Gaëlle Corsaut ◽  
...  

Abstract Background Cancer cell aggregation is a key process involved in the formation of tumor cell clusters. It has recently been shown that clusters of circulating tumor cells (CTCs) have an increased metastatic potential compared to isolated circulating tumor cells. Several widely used chemotherapeutic agents that target the cytoskeleton microtubules and cause cell cycle arrest at mitosis have been reported to modulate CTC number or the size of CTC clusters. Results In this study, we investigated in vitro the impact of mitotic arrest on the ability of breast tumor cells to form clusters. By using live imaging and quantitative image analysis, we found that MCF-7 cancer cell aggregation is compromised upon incubation with paclitaxel or vinorelbine, two chemotherapeutic drugs that target microtubules. In line with these results, we observed that MCF-7 breast cancer cells experimentally synchronized and blocked in metaphase aggregated poorly and formed loose clusters. To monitor clustering at the single-cell scale, we next developed and validated an in vitro assay based on live video-microscopy and custom-designed micro-devices. The study of cluster formation from MCF-7 cells that express the fluorescent marker LifeAct-mCherry using this new assay allowed showing that substrate anchorage-independent clustering of MCF-7 cells was associated with the formation of actin-dependent highly dynamic cell protrusions. Metaphase-synchronized and blocked cells did not display such protrusions, and formed very loose clusters that failed to compact. Conclusions Altogether, our results suggest that mitotic arrest induced by microtubule-targeting anticancer drugs prevents cancer cell clustering and therefore, could reduce the metastatic potential of circulating tumor cells.


2020 ◽  
Author(s):  
Julia Bonnet ◽  
Lise Rigal ◽  
Odile Mondesert ◽  
Renaud Morin ◽  
Gaelle Corsaut ◽  
...  

Abstract BackgroundCancer cell aggregation is a key process involved in the formation of tumor cells clusters. It has recently been shown that clusters of circulating tumor cells (CTCs) have an increased metastatic potential compared to isolated circulating tumor cells. Several widely used chemotherapeutic agents that target the cytoskeleton microtubules and cause cell cycle arrest at mitosis have been reported to modulate the number of CTCs or the size of CTC clusters.ResultsIn this study, we investigated in vitro the impact of mitotic arrest on the ability of breast tumor cells to form clusters. By using live imaging and quantitative image analysis, we found that MCF-7 cancer cell aggregation is compromised upon incubation with paclitaxel or vinorelbine, two chemotherapeutic drugs that target microtubules. In line with these results, we found that MCF-7 breast cancer cells experimentally synchronized and blocked in metaphase aggregated poorly with strongly reduced cohesion. To monitor clustering at the single-cell scale, we next developed and validated an in vitro assay based on live video-microscopy and custom-designed micro-devices. The study of cluster formation from MCF-7 cells that express the fluorescent marker LifeAct-mCherry using this new assay allowed showing that substrate anchorage-independent clustering of MCF-7 cells was associated with the formation of actin-dependent highly dynamic cell protrusions. Metaphase-synchronized and blocked cells did not display such protrusions, and formed very loose clusters that failed to compact.ConclusionsAltogether, our results suggest that mitotic arrest induced by microtubule-targeting anticancer drugs prevents cancer cell clustering and therefore, could reduce the metastatic potential of circulating tumor cells.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Thandi Mqoco ◽  
André Stander ◽  
Anna-Mart Engelbrecht ◽  
Anna M Joubert

Current chemotherapeutic agents have many side effects and are toxic to normal cells, providing impetus to identify agents that can effectively eliminate tumorigenic cells without damaging healthy cells. The aim of this study was to examine whether combining a novel BRD4 inhibitor, ITH-47, with the antimitotic estradiol analogue, ESE-15-ol, would have a synergistic effect on inhibiting the growth of two different breast cancer cell lines in vitro. Our docking and molecular dynamics studies showed that compared to JQ1, ITH-47 showed a similar binding mode with hydrogen bonds forming between the ligand nitrogens of the pyrazole, ASN99, and water of the BRD4 protein. Data from cell growth studies revealed that the GI50 of ITH-47 and ESE-15-ol after 48 hours of exposure was determined to be 15 μM and 70 nM, respectively, in metastatic MDA-MB-231 breast cancer cells. In tumorigenic MCF-7 breast cancer cells, the GI50 of ITH-47 and ESE-15-ol was 75 μM and 60 nM, respectively, after 48 hours of exposure. Furthermore, the combination of 7.5 μM and 14 nM of ITH-47 and ESE-15-ol, respectively, resulted in 50% growth inhibition of MDA-MB-231 cells resulting in a synergistic combination index (CI) of 0.7. Flow cytometry studies revealed that, compared to the control, combination-treated MDA-MB-231 cells had significantly more cells present in the sub-G1 phase and the combination treatment induced apoptosis in the MDA-MB-231 cells. Compared to vehicle-treated cells, the combination-treated cells showed decreased levels of the BRD4, as well as c-Myc protein after 48 hours of exposure. In combination, the selective BRD4 inhibitor, ITH-47, and ESE-15-ol synergistically inhibited the growth of MDA-MB-231 breast cancer cells, but not of the MCF-7 cell line. This study provides evidence that resistance to BRD4 inhibitors may be overcome by combining inhibitors with other compounds, which may have treatment potential for hormone-independent breast cancers.


Author(s):  
Julianne D. Twomey ◽  
Baolin Zhang

Circulating tumor cells (CTCs) in the peripheral blood are the precursors to distant metastasis but the underlying mechanisms are poorly understood.  This study aims at understanding the molecular features within CTCs in relation to their metastatic potential.  Using in vitro CTC models, in which breast cancer cell lines are cultured in non-adherent conditions simulating the microenvironment in the blood stream, we found that suspension culture resulted in resistance to TNF-related apoptosis inducing ligand (TRAIL)-mediated cell death. Such a resistance was directly correlated with a reduction in surface and total levels of DR5 protein. In the non-adherent state, cells underwent rapid autophagic flux characterized by an accumulation of autophagosome organelles. Notably, DR5 was translocated to autophagosomes and underwent lysosomal degradation.  Our data suggest that CTCs may evade TNF cytokine mediated immune surveillance through downregulation of DR expression. The data warrants further studies in cancer patients to find the status of DRs and other molecular features within primary CTCs in relation to disease progression or chemoresistance.


Blood ◽  
2000 ◽  
Vol 96 (10) ◽  
pp. 3302-3309 ◽  
Author(s):  
Joseph S. Palumbo ◽  
Keith W. Kombrinck ◽  
Angela F. Drew ◽  
Timothy S. Grimes ◽  
John H. Kiser ◽  
...  

Abstract Detailed studies of tumor cell–associated procoagulants and fibrinolytic factors have implied that local thrombin generation and fibrin deposition and dissolution may be important in tumor growth and dissemination. To directly determine whether fibrin(ogen) or plasmin(ogen) are determinants of the metastatic potential of circulating tumor cells, this study examined the impact of genetic deficits in each of these key hemostatic factors on the hematogenous pulmonary metastasis of 2 established murine tumors, Lewis lung carcinoma and the B16-BL6 melanoma. In both tumor models, fibrinogen deficiency strongly diminished, but did not prevent, the development of lung metastasis. The quantitative reduction in metastasis in fibrinogen-deficient mice was not due to any appreciable difference in tumor stroma formation or tumor growth. Rather, tumor cell fate studies indicated an important role for fibrin(ogen) in sustained adhesion and survival of tumor cells within the lung. The specific thrombin inhibitor, hirudin, further diminished the metastatic potential of circulating tumor cells in fibrinogen-deficient mice, although the inhibitor had no apparent effect on tumor cell proliferation in vitro. The absence of plasminogen and plasmin-mediated fibrinolysis had no significant impact on hematogenous metastasis. The authors concluded that fibrin(ogen) is a critical determinant of the metastatic potential of circulating tumor cells. Furthermore, thrombin appears to facilitate tumor dissemination through at least one fibrin(ogen)-independent mechanism. These findings suggest that therapeutic strategies focusing on multiple distinct hemostatic factors might be beneficial in the containment of tumor metastasis.


Blood ◽  
2000 ◽  
Vol 96 (10) ◽  
pp. 3302-3309 ◽  
Author(s):  
Joseph S. Palumbo ◽  
Keith W. Kombrinck ◽  
Angela F. Drew ◽  
Timothy S. Grimes ◽  
John H. Kiser ◽  
...  

Detailed studies of tumor cell–associated procoagulants and fibrinolytic factors have implied that local thrombin generation and fibrin deposition and dissolution may be important in tumor growth and dissemination. To directly determine whether fibrin(ogen) or plasmin(ogen) are determinants of the metastatic potential of circulating tumor cells, this study examined the impact of genetic deficits in each of these key hemostatic factors on the hematogenous pulmonary metastasis of 2 established murine tumors, Lewis lung carcinoma and the B16-BL6 melanoma. In both tumor models, fibrinogen deficiency strongly diminished, but did not prevent, the development of lung metastasis. The quantitative reduction in metastasis in fibrinogen-deficient mice was not due to any appreciable difference in tumor stroma formation or tumor growth. Rather, tumor cell fate studies indicated an important role for fibrin(ogen) in sustained adhesion and survival of tumor cells within the lung. The specific thrombin inhibitor, hirudin, further diminished the metastatic potential of circulating tumor cells in fibrinogen-deficient mice, although the inhibitor had no apparent effect on tumor cell proliferation in vitro. The absence of plasminogen and plasmin-mediated fibrinolysis had no significant impact on hematogenous metastasis. The authors concluded that fibrin(ogen) is a critical determinant of the metastatic potential of circulating tumor cells. Furthermore, thrombin appears to facilitate tumor dissemination through at least one fibrin(ogen)-independent mechanism. These findings suggest that therapeutic strategies focusing on multiple distinct hemostatic factors might be beneficial in the containment of tumor metastasis.


2021 ◽  
Author(s):  
Jie Wang ◽  
Xiaobo Yu ◽  
Huayi Peng ◽  
Yusheng Lu ◽  
Shuhui Li ◽  
...  

Abstract Background: The global epidemiological studies reported lower cancer risk after long-term use of contraceptives. Our systematic studies demonstrated that abortifacients are effective in preventing cancer metastases induced by circulating tumor cells (CTCs). However, the molecular and cellular mechanisms by which abortifacients prevent CTC-based cancer metastases are almost unknown. The present studies were designed to interdisciplinarily explore similarities and differences between embryo implantation and cancer cell adhesion/invasion.Methods: Biomarker expressions on the seeding embryo JEG-3 and cancer MCF-7 cells, as well as embedding uterine endometrial RL95-2 and vascular endothelial HUVECs cells were examined and compared before and after treatments with 17β-estradiol plus progesterone and abortifacients. Effects of oral metapristone and mifepristone on embryo implantation in normal female mice and adhesion/invasion of circulating tumor cells (CTCs) in BALB/C female mice were examined. Results: Both embryo JEG-3 and cancer MCF-7 cells expressed high sLex, CD47, CAMs, while both endometrial RL95-2 and endothelial HUVECs exhibited high integrins and ICAM-1. Near physiological concentrations of 17β-estradiol plus progesterone promoted migration and invasion of JEG-3 and MCF-7 cells via upregulating integrins and MMP. Whereas, mifepristone and metapristone significantly inhibited migration and invasion of JEG-3 and MCF-7 cells, and inhibited JEG-3 and MCF-7 adhesion to matrigel, RL95-2 cells and HUVECs, respectively. The inhibitions were realized by downregulating sLex, MMPs in JEG-3 and MCF-7 cells, and downregulating integrins in RL95-2 cells and HUVECs, respectively. Mifepristone and metapristone significantly inhibited both embryo implantation and cancer cell metastasis in mice.Conclusions: The similarities between the two systems provide fundamentals for abortifacients to intervene CTC adhesion/invasion to the distant metastatic organs. The present study offers the rationale to repurpose abortifacients for safe and effective cancer metastasis chemoprevention.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Siddarth Agrawal ◽  
Marta Woźniak ◽  
Mateusz Łuc ◽  
Sebastian Makuch ◽  
Ewa Pielka ◽  
...  

Abstract The present state of cancer chemotherapy is unsatisfactory. New anticancer drugs that marginally improve the survival of patients continue to be developed at an unsustainably high cost. The study aimed to elucidate the effects of insulin (INS), an inexpensive drug with a convincing safety profile, on the susceptibility of colon cancer to chemotherapeutic agents: 5-fluorouracil (FU), oxaliplatin (OXA), irinotecan (IRI), cyclophosphamide (CPA) and docetaxel (DOC). To examine the effects of insulin on cell viability and apoptosis, we performed an in vitro analysis on colon cancer cell lines Caco-2 and SW480. To verify the results, we performed in vivo analysis on mice bearing MC38 colon tumors. To assess the underlying mechanism of the therapy, we examined the mRNA expression of pathways related to the signaling downstream of insulin receptors (INSR). Moreover, we performed Western blotting to confirm expression patterns derived from the genetic analysis. For the quantification of circulating tumor cells in the peripheral blood, we used the maintrac method. The results of our study show that insulin-pretreated colon cancer cells are significantly more susceptible to commonly used chemotherapeutics. The apoptosis ratio was also enhanced when INS was administered complementary to the examined drugs. The in vivo study showed that the combination of INS and FU resulted in significant inhibition of tumor growth and reduction of the number of circulating tumor cells. This combination caused a significant downregulation of the key signaling substrates downstream of INSR. The results indicate that the downregulation of PIK3CA (phosphatidylinositol 3-kinase catalytic subunit alpha), which plays a critical role in cell signaling and GRB2 (growth factor receptor-bound protein 2), a regulator of cell proliferation and differentiation may be responsible for the sensitizing effect of INS. These findings were confirmed at protein levels by Western blotting. In conclusion, these results suggest that INS might be potentially applied to clinical use to enhance the therapeutic effectiveness of chemotherapeutic drugs. The findings may become a platform for the future development of new and inexpensive strategies for the clinical chemotherapy of tumors.


Sign in / Sign up

Export Citation Format

Share Document