scholarly journals Carboxylated Nanocellulose Superabsorbent: Biodegradation and Soil Water Retention Properties

Author(s):  
Ruth M. Barajas ◽  
Vanessa Wong ◽  
Karen Little ◽  
Antonio F. Patti ◽  
Gil Garnier

Abstract Carboxylated nanocellulose superabsorbent polymers (SAP) can be used to increase soil water retention in agriculture. The benefits investigated are influenced by the superabsorbent structure, composition and application rate. In this study, TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl)-oxidised nanocellulose superabsorbents were prepared using three different drying techniques: freeze-dried, and oven-dried at low and high temperatures. The swelling capacity in soil water extracts was measured and compared to deionised water. Soil was amended with different application rates of these superabsorbents to evaluate the effects on water retention, microbial community and their biodegradation. The absorption performance of nanocellulose superabsorbents is affected by the concentration and type of salts in the soil water extracts. Oven-dried at 50°C SAP presents the highest ionic sensitivity attributed to its large number of accessible carboxylate groups. The water retention of the soil treatments increases with increasing application rate. Soil treated with the freeze-dried superabsorbent shows the highest water retention, whereas those amended with the 50°C oven-dried SAP remain moist the longest. The biodegradation rate of these materials depends on the application rate and nutrient availability. Carboxylated nanocellulose superabsorbents emerge as high-performance biodegradable materials for agricultural use, able to replace the current non-biodegradable petrochemical-based superabsorbents.

2021 ◽  
pp. 51495
Author(s):  
Ruth M. Barajas‐Ledesma ◽  
Vanessa N. L. Wong ◽  
Karen Little ◽  
Antonio F. Patti ◽  
Gil Garnier

2013 ◽  
Vol 50 (4) ◽  
pp. 435-450 ◽  
Author(s):  
Christopher T.S. Beckett ◽  
Charles E. Augarde

Several models have been suggested to link a soil's pore-size distribution to its retention properties. This paper presents a method that builds on previous techniques by incorporating porosity and particles of different sizes, shapes, and separation distances to predict soil water retention properties. Mechanisms are suggested for the determination of both the main drying and wetting paths, which incorporate an adsorbed water phase and retention hysteresis. Predicted results are then compared with measured retention data to validate the model and to provide a foundation for discussing the validity and limitations of using pore-size distributions to predict retention properties.


2021 ◽  
Vol 11 (24) ◽  
pp. 12108
Author(s):  
Giorgio Baiamonte ◽  
Giuseppina Crescimanno ◽  
Francesco Parrino ◽  
Claudio De Pasquale

There are significant regional differences in the perception of the problems posed by global warming, water/food availability and waste treatment recycling procedures. The study illustrates the effect of application of a biochar (BC) from forest biomass waste, at a selected application rate, on water retention, plant available water (PAW), and structural properties of differently standard textured soils, classified as loamy sand, loam and clay. The results showed that soil water retention, PAW, and aggregate stability were significantly improved by BC application in the loamy sand, confirming that application of BC to this soil was certainly beneficial and increased the amount of macropores, storage pores and residual pores. In the loam, BC partially improved water retention, increasing macroporosity, but decreased the amount of micropores and improved aggregate stability and did not significantly increase the amount of PAW. In the clay, the amount of PAW was increased by BC, but water retention and aggregate stability were not improved by BC amendment. Results of the BET analysis indicated that the specific surface area (BET-SSA) increased in the three soils after BC application, showing a tendency of the BET-SSA to increase at increasing PAW. The results obtained indicated that the effects of BC application on the physical and structural properties of the three considered soils were different depending on the different soil textures with a BET-SSA increase of 950%, 489%, 156% for loamy sand, loam and clay soil respectively. The importance of analysing the effects of BC on soil water retention and PAW in terms of volumetric water contents, and not only in terms of gravimetric values, was also evidenced.


2019 ◽  
Vol 14 (No. 2) ◽  
pp. 67-75
Author(s):  
Hana Hlaváčiková ◽  
Viliam Novák ◽  
Koji Kameyama ◽  
Katarína Brezianska ◽  
Marek Rodný ◽  
...  

Biochar (BC) is used as a soil amendment to enhance plant growth by improving mainly soil chemical and hydrophysical properties. In this work the effects of two types of BCs on soil water retention properties were analysed. The first type of BC was made from sugarcane bagasse. It was added to a clay “Shimajiri Maji” soil at an application rate of 3 w%. The second type of BC was made from paper fiber sludge and grain husks. It was added into a loam soil at rates of 3.6, and 7.3 w%. It was assumed that the effect of BC amendment will be more pronounced in coarse-grained soil than in fine-grained one. Therefore, the second type of BC was applied additionally in the silica sand, in a textured contrast material compared with the loam soil. The BC amendment caused statistically significant increase of water content in the transmission pores of the clay soil, in the storage pores of the loam soil, and in the macropores and the storage pores in the silica sand. Despite of the positive effect on soil water retention, statistically significant increase of available water capacity (AWC) was identified only in the loam soil with the larger BC amendment rate. Possible reasons are discussed.


Author(s):  
Kai Wei ◽  
Jihong Zhang ◽  
Quanjiu Wang ◽  
Yong Chen ◽  
Qian Ding

There is an urgent need for brackish groundwater-based irrigation methods to be developed for saline soils that are effective, economically advantageous, and environmentally friendly. The use of both ionized brackish water and polyacrylamide (PAM) might provide such a method. The long-term use of brackish water irrigation can lead to the secondary salinization of soil and, as a consequence, restrict the development of the agricultural economy. Here, we conducted one-dimensional vertical infiltration experiments to examine the effects of ionized brackish water and PAM on soil infiltration characteristics. The result indicated that the water retention of soil first increased and then decreased with the increased in PAM application rates. The maximum water retention of soil was obtained in PAM application of 0.04% for ionized brackish water treatment. Soil water storage for the 0.04% PAM application under ionized brackish water irrigation was the highest and 5.1% higher compared with non-ionized brackish water at a PAM application rate of 0.04%. The ionized brackish water treatment at a PAM application rate of 0.04% improved the desalinization efficiency by 2.3% compared with non-ionized brackish water treatment. Thus, ionized treatment and PAM application are effective for improving the characteristics of soil water and salt transport and permit the safe use of brackish groundwater for irrigation.


2016 ◽  
Vol 11 (6) ◽  
pp. 1228-1237
Author(s):  
Khonesavanh Vilayvong ◽  
◽  
Noriyuki Yasufuku ◽  
Kiyoshi Omine ◽  
◽  
...  

Soil-organic amendment (SOA) is one of the sustainable soil improvement measures to mitigate climate change related issues such as rainfall-induced hazard and soil erosion. Organic wastes particularly compost and biochar can be reused and recycled into viable resources. However, there are limited data on incoporating organic wastes into a soil that is susceptible to erosion by rainfall. Therefore, objective of this study is to investigate properties of a soil from Okinawa prefecture (Kunigami maaji) that are associated with resisting ability against artificial rainfall intensities of 30, 60, 90 and 120 mm/h after adding two organic matters: household-derived compost and rice hush-derived biochar. The properties were soil-water retention, runoff, soil loss, infiltration and electrical conductivity. The compost was mixed with the soil at application rates of 0.5, 1.0, 1.5 and 2.0 kg/m2. The compost of 1.0 kg/m2was mixed with the soil and the biochar at application rates of 1, 3, and 5% by total weight. Experimental results indicate that the soil water retention properties of the soil were improved by the treatment of compost and biochar. However, soil loss was not significantly reduced under initially saturated soil condition, applied rainfall intensities, testing duration and experimental conditions. The results of this study could be used as baseline data for evaluating correlation between properties of soil water retention curves to soil erosion.


Sign in / Sign up

Export Citation Format

Share Document