Effects of ionized brackish water and polyacrylamide application on infiltration characteristics and improving water retention and reducing soil salinity

Author(s):  
Kai Wei ◽  
Jihong Zhang ◽  
Quanjiu Wang ◽  
Yong Chen ◽  
Qian Ding

There is an urgent need for brackish groundwater-based irrigation methods to be developed for saline soils that are effective, economically advantageous, and environmentally friendly. The use of both ionized brackish water and polyacrylamide (PAM) might provide such a method. The long-term use of brackish water irrigation can lead to the secondary salinization of soil and, as a consequence, restrict the development of the agricultural economy. Here, we conducted one-dimensional vertical infiltration experiments to examine the effects of ionized brackish water and PAM on soil infiltration characteristics. The result indicated that the water retention of soil first increased and then decreased with the increased in PAM application rates. The maximum water retention of soil was obtained in PAM application of 0.04% for ionized brackish water treatment. Soil water storage for the 0.04% PAM application under ionized brackish water irrigation was the highest and 5.1% higher compared with non-ionized brackish water at a PAM application rate of 0.04%. The ionized brackish water treatment at a PAM application rate of 0.04% improved the desalinization efficiency by 2.3% compared with non-ionized brackish water treatment. Thus, ionized treatment and PAM application are effective for improving the characteristics of soil water and salt transport and permit the safe use of brackish groundwater for irrigation.

2006 ◽  
Vol 54 (5) ◽  
pp. 227-234 ◽  
Author(s):  
M. Moodley ◽  
J.C. Hughes

Water treatment residue (WTR), a by-product from the production of potable water, was traditionally disposed of to landfill but there is growing interest in applying this waste to land as an alternative disposal option. Because WTR consists mainly of flocculated fine silt and clay, there is concern that should the residue decompose back to its original constituents, there is an adverse risk for soil water storage and transmission properties of soil. In a laboratory study, four different soil types were amended with a polyacrylamide WTR at rates ranging from 0 to 1,280 Mg ha−1. The treatments were evaluated for changes in water retention, hydraulic conductivity and evaporation. The results showed that WTR decreased bulk density and evaporation and actually increased hydraulic conductivity and water retention, mainly because of the sustained performance of the polymer in binding the silt and clay into gravel-sized aggregates. Such changes were, however, only significant at the 1,280 Mg ha−1 application rate. Therefore, very large amounts of WTR would have to be applied in order to markedly change these inherent physical properties of the soils. In view of this finding, the land treatment of WTR appears possible.


2021 ◽  
Author(s):  
Ruth M. Barajas ◽  
Vanessa Wong ◽  
Karen Little ◽  
Antonio F. Patti ◽  
Gil Garnier

Abstract Carboxylated nanocellulose superabsorbent polymers (SAP) can be used to increase soil water retention in agriculture. The benefits investigated are influenced by the superabsorbent structure, composition and application rate. In this study, TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl)-oxidised nanocellulose superabsorbents were prepared using three different drying techniques: freeze-dried, and oven-dried at low and high temperatures. The swelling capacity in soil water extracts was measured and compared to deionised water. Soil was amended with different application rates of these superabsorbents to evaluate the effects on water retention, microbial community and their biodegradation. The absorption performance of nanocellulose superabsorbents is affected by the concentration and type of salts in the soil water extracts. Oven-dried at 50°C SAP presents the highest ionic sensitivity attributed to its large number of accessible carboxylate groups. The water retention of the soil treatments increases with increasing application rate. Soil treated with the freeze-dried superabsorbent shows the highest water retention, whereas those amended with the 50°C oven-dried SAP remain moist the longest. The biodegradation rate of these materials depends on the application rate and nutrient availability. Carboxylated nanocellulose superabsorbents emerge as high-performance biodegradable materials for agricultural use, able to replace the current non-biodegradable petrochemical-based superabsorbents.


2018 ◽  
Vol 66 (2) ◽  
pp. 181-188 ◽  
Author(s):  
Hana Hlaváčiková ◽  
Viliam Novák ◽  
Zdeněk Kostka ◽  
Michal Danko ◽  
Jozef Hlavčo

AbstractStony soils are composed of two fractions (rock fragments and fine soil) with different hydrophysical characteristics. Although stony soils are abundant in many catchments, their properties are still not well understood. This manuscript presents an application of the simple methodology for deriving water retention properties of stony soils, taking into account a correction for the soil stoniness. Variations in the water retention of the fine soil fraction and its impact on both the soil water storage and the bottom boundary fluxes are studied as well. The deterministic water flow model HYDRUS-1D is used in the study. The results indicate that the presence of rock fragments in a moderate-to-high stony soil can decrease the soil water storage by 23% or more and affect the soil water dynamics. Simulated bottom fluxes increased or decreased faster, and their maxima during the wet period were larger in the stony soil compared to the non-stony one.


Soil Research ◽  
2016 ◽  
Vol 54 (3) ◽  
pp. 276 ◽  
Author(s):  
Giacomo Betti ◽  
Cameron D. Grant ◽  
Robert S. Murray ◽  
G. Jock Churchman

Clay delving in strongly texture-contrast soils brings up subsoil clay in clumps ranging from large clods to tiny aggregates depending on the equipment used and the extent of secondary cultivation. Clay delving usually increases crop yields but not universally; this has generated questions about best management practices. It was postulated that the size distribution of the subsoil clumps created by delving might influence soil-water availability (and hence crop yield) because, although the clay increases water retention in the root-zone, it can also cause poor soil aeration, high soil strength and greatly reduced hydraulic conductivity. We prepared laboratory mixtures of sand and clay-rich subsoil in amounts considered practical (10% and 20% by weight) and excessive (40% and 60% by weight) with different subsoil clod sizes (<2, 6, 20 and 45 mm), for which we measured water retention, soil resistance, and saturated hydraulic conductivity. We calculated soil water availability by traditional means (plant-available water, PAW) and by the integral water capacity (IWC). We found that PAW increased with subsoil clay, particularly when smaller aggregates were used (≤6 mm). However, when the potential restrictions on PAW were taken into account, the benefits of adding clay reached a peak at ~40%, beyond which IWC declined towards that of pure subsoil clay. Furthermore, the smaller the aggregates the less effective they were at increasing IWC, particularly in the practical range of application rates (<20% by weight). We conclude that excessive post-delving cultivation may not be warranted and may explain some of the variability found in crop yields after delving.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2219
Author(s):  
Saadi Sattar Shahadha ◽  
Ole Wendroth ◽  
Dianyuan Ding

Nitrogen (N) fertilization is critical for crop growth; however, its effect on crop growth and evapotranspiration (ETc) behaviors under different amounts of rainfall is not well understood. As such, there is a need for studying the impact of nitrogen application rates and rainfall amounts on crop growth and ETc components. Agricultural system models help to fill this knowledge gap, e.g., the Root Zone Water Quality Model (RZWQM2), which integrates crop growth-related processes. The objective of this study is to investigate the effect of the nitrogen application rate on crop growth, soil water dynamics, and ETc behavior under different rainfall amounts by using experimental data and the RZWQM2. A field study was conducted from 2016 to 2019 with three nitrogen application rates (0, 70 and 130 kg N ha−1) for unirrigated winter wheat (Triticum aestivum L.), and two nitrogen application rates (0 and 205 kg N ha−1) for unirrigated corn (Zea mays L.). For the period of 1986–2019, the amounts of actual rainfall during each crop growth period are categorized into four groups. Each rainfall group is used as a rainfall scenario in the RZWQM2 to explore the interactions between the rainfall amounts and N levels on the resulting crop growth and water status. The results show that the model satisfactorily captures the interaction effects of nitrogen application rates and rainfall amounts on the daily ETc and soil water dynamics. The nitrogen application rate showed a noticeable impact on the behavior of soil water dynamics and ETc components. The 75% rainfall scenario yielded the highest nitrogen uptake for both crops. This scenario revealed the highest water consumption for wheat, while corn showed the highest water uptake for the 100% rainfall scenario. The interaction between a high nitrogen level and 50% rainfall yielded the highest water use efficiency, while low nitrogen and 125% rainfall yielded the highest nitrogen use efficiency. A zero nitrogen rate yielded the highest ETc and lowest soil water content among all treatments. Moreover, the impacts of the nitrogen application rate on ETc behavior, crop growth, and soil water dynamics differed depending on the received rainfall amount.


2021 ◽  
Vol 11 (24) ◽  
pp. 12108
Author(s):  
Giorgio Baiamonte ◽  
Giuseppina Crescimanno ◽  
Francesco Parrino ◽  
Claudio De Pasquale

There are significant regional differences in the perception of the problems posed by global warming, water/food availability and waste treatment recycling procedures. The study illustrates the effect of application of a biochar (BC) from forest biomass waste, at a selected application rate, on water retention, plant available water (PAW), and structural properties of differently standard textured soils, classified as loamy sand, loam and clay. The results showed that soil water retention, PAW, and aggregate stability were significantly improved by BC application in the loamy sand, confirming that application of BC to this soil was certainly beneficial and increased the amount of macropores, storage pores and residual pores. In the loam, BC partially improved water retention, increasing macroporosity, but decreased the amount of micropores and improved aggregate stability and did not significantly increase the amount of PAW. In the clay, the amount of PAW was increased by BC, but water retention and aggregate stability were not improved by BC amendment. Results of the BET analysis indicated that the specific surface area (BET-SSA) increased in the three soils after BC application, showing a tendency of the BET-SSA to increase at increasing PAW. The results obtained indicated that the effects of BC application on the physical and structural properties of the three considered soils were different depending on the different soil textures with a BET-SSA increase of 950%, 489%, 156% for loamy sand, loam and clay soil respectively. The importance of analysing the effects of BC on soil water retention and PAW in terms of volumetric water contents, and not only in terms of gravimetric values, was also evidenced.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Songrui Ning ◽  
Halidaimu Jumai ◽  
Quanjiu Wang ◽  
Beibei Zhou ◽  
Lijun Su ◽  
...  

Superabsorbent polymers have been used widely in agricultural production in arid and semi-arid regions to manage the soil water holding capacity. As the common water-retention polymers, the molecular weights, and structures of polyacrylamide (PAM) and sodium carboxymethylcellulose (CMC) are obviously different. Modified soil water management with polymers (i.e., PAM and CMC) has shown great promise for water conservation. Few researchers have reported the comparison of the effects of PAM and CMC on soil infiltration characteristics, especially in coarse-textured soils (i.e., sandy loam). In this research, two high-molecular polymers (PAM and CMC) were used to investigate the effects of polymers on soil water infiltration characteristics by laboratory experiment. The infiltration reduction effects of CMC treatments were more obvious than those of PAM treatments. With the applied rates of PAM (0.2–0.8 g/kg) and CMC (1–4 g/kg) increased, the processes of soil water infiltration were inhibited. The average infiltration time of CMC with different application rates is 1.85 times than that of PAM with different treatments. The mean wetting front distances of different application rates treatments of PAM and CMC were 22.20 and 19.23 cm. At the same application rate, applied CMC is more effective in reducing soil sorptivity than applied PAM in sandy loam soils. Moreover, the cost of application of CMC is lower than the cost of application of PAM. The mean economic inputs of PAM and CMC were 153.90 and 35.24 RMB/hm2. Therefore, CMC was selected and recommended as the suitable water retention agent in sandy loam soils.


2019 ◽  
Vol 14 (No. 2) ◽  
pp. 67-75
Author(s):  
Hana Hlaváčiková ◽  
Viliam Novák ◽  
Koji Kameyama ◽  
Katarína Brezianska ◽  
Marek Rodný ◽  
...  

Biochar (BC) is used as a soil amendment to enhance plant growth by improving mainly soil chemical and hydrophysical properties. In this work the effects of two types of BCs on soil water retention properties were analysed. The first type of BC was made from sugarcane bagasse. It was added to a clay “Shimajiri Maji” soil at an application rate of 3 w%. The second type of BC was made from paper fiber sludge and grain husks. It was added into a loam soil at rates of 3.6, and 7.3 w%. It was assumed that the effect of BC amendment will be more pronounced in coarse-grained soil than in fine-grained one. Therefore, the second type of BC was applied additionally in the silica sand, in a textured contrast material compared with the loam soil. The BC amendment caused statistically significant increase of water content in the transmission pores of the clay soil, in the storage pores of the loam soil, and in the macropores and the storage pores in the silica sand. Despite of the positive effect on soil water retention, statistically significant increase of available water capacity (AWC) was identified only in the loam soil with the larger BC amendment rate. Possible reasons are discussed.


2021 ◽  
Author(s):  
HAFEEZ NOOR ◽  
Min Sun ◽  
Wen Lin ◽  
Zhiq-iang Gao

Abstract Sustainability of winter wheat yield under dryland conditions depends on Improvements in crop photosynthetic characteristics and, crop yield. Study the effects of sowing method and N-nitrogen rates on yield, selected sowing, and soil water storage, nitrogen translocation. Experiment comprised of three sowing methods: wide-space sowing (WSS), furrow sowing (FS), and drill sowing (DS) and seven nitrogen treatments: 0 kg ha− 1, 90 kg ha− 1, 180 kg ha− 1, 210 kg ha− 1, 240 kg ha− 1, 270 kg ha− 1 and 300 kg ha− 1.The results indicated that the sowing methods significantly affected the yield, and grain. The increase in grain yield was 25%, respectively. The photosynthetic traits, and leaf area index were highest under WS followed by FS. The plant height was highest under DS. I (WSS), and (II) (DS). Sowing method WSS with N level N240 significantly enhanced the Photosynthesis Rate, intercellular CO2, and transpiration rate .Our results indicated that implication of a proper sowing method coupled with enhanced nitrogen doses resulted in an increase in yield. WSS 240 kg ha− 1 enhances photosynthetic characteristics of flag leaves, and promotes to achieve high yield. The plants were improved, which ware beneficial to the improvement of sugar content.


2016 ◽  
Vol 11 (6) ◽  
pp. 1228-1237
Author(s):  
Khonesavanh Vilayvong ◽  
◽  
Noriyuki Yasufuku ◽  
Kiyoshi Omine ◽  
◽  
...  

Soil-organic amendment (SOA) is one of the sustainable soil improvement measures to mitigate climate change related issues such as rainfall-induced hazard and soil erosion. Organic wastes particularly compost and biochar can be reused and recycled into viable resources. However, there are limited data on incoporating organic wastes into a soil that is susceptible to erosion by rainfall. Therefore, objective of this study is to investigate properties of a soil from Okinawa prefecture (Kunigami maaji) that are associated with resisting ability against artificial rainfall intensities of 30, 60, 90 and 120 mm/h after adding two organic matters: household-derived compost and rice hush-derived biochar. The properties were soil-water retention, runoff, soil loss, infiltration and electrical conductivity. The compost was mixed with the soil at application rates of 0.5, 1.0, 1.5 and 2.0 kg/m2. The compost of 1.0 kg/m2was mixed with the soil and the biochar at application rates of 1, 3, and 5% by total weight. Experimental results indicate that the soil water retention properties of the soil were improved by the treatment of compost and biochar. However, soil loss was not significantly reduced under initially saturated soil condition, applied rainfall intensities, testing duration and experimental conditions. The results of this study could be used as baseline data for evaluating correlation between properties of soil water retention curves to soil erosion.


Sign in / Sign up

Export Citation Format

Share Document