scholarly journals Trace Elements and REY in the Muschelkalk Limestones of the Opole Silesia in Poland

Author(s):  
Katarzyna Jadwiga Stanienda-Pilecki

Abstract The results of researches of the selected trace elements: Ti, Sr, Ba, Zn, and also Cr, Ni, Cu, Zr, Mo, Pb, Rb, Mn, Na, K, P, Y and REE (REY) content were presented in this article. The elements were measured in the carbonate minerals of Muschelkalk (Middle Triassic) limestones of the Opole Silesia in Poland, using two methods: ICP MS spectrometry and X-ray fluorescence. These methods are characterized by very high precision and sensitivity of measurements. The results of researches show that the content of analyzed trace elements varies in from value below 1 ppm up to some hundreds ppm. However, the highest contents were measured for strontium and barium, elements characteristic for aragonite carbonate phase which is transformed such as high-Mg calcite into low magnesium calcite during diagenesis. So as Sr and Ba indicate the presence of aragonite in the primary carbonate material. The other trace elements probably form substitutions in clay or carbonate minerals. Some of trace elements such as Zn, Pb, Cu, Mo, Ni may also be associated with sulfide minerals and Ti, Cr, Mn, with oxides. Some measured REY elements- Ce, Nd, Sm, Gd, Dy, Er and Y are found in the rocks in very small quantities. So their content is really very low. It varies in from value below 1 ppm up to 6 ppm. REY usually substitute Ca ions in calcite.

1971 ◽  
Vol 38 (296) ◽  
pp. 481-487 ◽  
Author(s):  
H. A. Gunatilaka ◽  
Roger Till

SummaryA precise and accurate X-ray diffraction method has been developed whereby the weight percentages of aragonite and low- and high-magnesium calcite are determined from the integrated peak areas of spiked and unspiked samples. The spike mixture was prepared from organisms extracted from the samples to be analysed. Use of a spiking method also avoided the preparation of working curves from artificial mixtures of carbonate minerals, which may not have the same diffraction behaviour as the unknowns. A test of the precision of the method indicates the following coefficients of variation: aragonite, 1·4 %; low-magnesium calcite, 1·5 %; high-magnesium calcite, 7·8 %. A test of the accuracy of the method indicates no significant bias in any of the carbonate results, except in samples where high-magnesium calcite values are below 10 %. Quartz may also be determined by this method (coefficient of variation 23·9 %; positive bias in values greater than 10 %).


2010 ◽  
Vol 59 (6) ◽  
pp. 521-530 ◽  
Author(s):  
Hiroshi Hasegawa ◽  
Nozomu Iwasaki ◽  
Atsushi Suzuki ◽  
Teruya Maki ◽  
Shinjiro Hayakawa

Palaios ◽  
2020 ◽  
Vol 35 (10) ◽  
pp. 421-431
Author(s):  
LAURA J. COTTON ◽  
DAVID EVANS ◽  
SIMON J. BEAVINGTON-PENNEY

ABSTRACT Nummulites were one of the most abundant and widespread larger benthic foraminifera of the Paleogene, however, confusion remains within the literature as to whether their original test mineralogy was high or low magnesium calcite. As the number of studies using proxies based on Nummulites and related nummulitid geochemistry increase, it is essential to have a firm understanding of test composition to assess preservation within potential samples, and to interpret results. Here we employ a combination of X-ray diffraction, Fourier transform infra-red spectroscopy, and laser ablation ICPMS to determine magnesium content across exceptionally preserved and poorly preserved fossil material as well as modern examples of nummulitids—showing conclusively a primary intermediate to high magnesium calcite composition. This composition appears to be closely related to fluctuating ocean chemistry through the Paleogene. Using these results as an indicator of preservation we examine variation in trace element data across a suite of samples, and introduce the concept of the preservagram, a method of quickly visualizing different styles of carbonate diagenesis. Understanding the original mineralogy of nummulitids and, therefore, the extent to which specimens have been diagenetically altered, is essential as larger foraminifera are increasingly used in geochemical studies.


2016 ◽  
Vol 61 (1) ◽  
pp. 29-46 ◽  
Author(s):  
Katarzyna Stanienda

Abstract This article presents the results of studies of strontium and barium content in Triassic (Muschelkalk) carbonate rock samples taken from the area of the Polish part of the Germanic Basin (the area of Opole Silesia). Sr and Ba were determined in the rocks of all formations of the Lower Muschelkalk - Gogolin Beds, Górażdże Beds, Dziewkowice (Terebratula) Beds and Karchowice Beds. Strontium and barium are chemical elements characteristic for aragonite carbonate phase. Aragonite is unstable calcium carbonate phase which is transformed such as high-Mg calcite into low magnesium calcite during diagenesis. So as Sr and Ba indicate the presence of aragonite in the primary carbonate material. Now these elements concentrate in low-Mg calcite crystal structure. The Triassic rocks of Lower Muschelkalk which are mined in different quarries of the Opole Silesia area are mainly built of low-Mg calcite with lower amounts of high-Mg calcite, protodolomite, ordered dolomite and huntite. There are smaller addition of non-carbonate minerals - quartz, chalcedony, muscovite, feldspars and iron minerals. The presence of Sr and Ba now bound in a structure of low-Mg calcite will indicate the occurrence of aragonite in the primary carbonate material. The Triassic rocks from the area of Opole Silesia were studied to determine the rocks enriched in Sr and Ba. Selected rock samples were examined using ICP AES spectrometry, XRF analysis and microprobe measurements. The results of studies show that strontium and barium occur in rocks of all Lower Muschelkalk formations. The lowest contents of these elements were determined in rocks of Gogolin Beds, higher - in rocks of other formations. The results of studies show that Sr and Ba concentrate in low-Mg calcite which dominates in Lower Muschelkalk rocks. Limestone built mainly of low-Mg calcite or “pure” calcite without substitution of other elements, especially Mg, Fe, Si and Al could be applied in lime industry or in other branches of industry, where pure quality raw material, without substitutions is needed.


Radiocarbon ◽  
2010 ◽  
Vol 52 (2) ◽  
pp. 735-751 ◽  
Author(s):  
Katerina Douka ◽  
Robert E M Hedges ◽  
Thomas F G Higham

One critical variable in the successful application of radiocarbon dating is the effective removal of carbonaceous contaminants. In the case of marine carbonates, contamination appears usually in the form of secondary low-magnesium calcite, the stable polymorph of calcium carbonate and byproduct of the post-mortem recrystallization or replacement of the autochthonous phase, originally in the form of high-magnesium calcite or aragonite. Depending on the nature of the depositional environment, the secondary phase may be contemporary in age with the original shell carbonate and may have even been derived from it by dissolution-recrystallization processes, or can be an exogenous contaminant of younger or older age. The limited ability of current pretreatment protocols to detect and remove the secondary mineralogical phases prior to dating carbonates has been one of the reasons marine shell and coral 14C determinations are often difficult to validate in terms of their reliability. We have developed a new pretreatment protocol designed to achieve greater reliability and accuracy in the dating of this material. The method entails 2 steps. The first one involves the improved detection and quantification of secondary calcite in aragonite using X-ray diffraction, at a precision of ∼0.1% and ∼0.8%, respectively. Next, where this is required, a novel density separation step using non-toxic heavy liquids (CarDS) is applied to the diagenetic sample. This enables the clear separation of calcite and aragonite, with only the latter kept for dating. We have applied the new steps, screening and separation, on standard and archaeological examples and our initial results suggest that it is successful and reproducible. In this paper, we describe the method and initial results.


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 837
Author(s):  
Franca Caucia ◽  
Maurizio Scacchetti ◽  
Luigi Marinoni ◽  
Mattia Gilio ◽  
Antonio Langone ◽  
...  

In this work a rare and attractive blue diopside present in Sissone valley in the Western Alps was investigated through different methodologies: geological survey; standard gemological methods; X-Ray Powder Diffraction; SEM observations; Raman spectrometry; EMP analyses of major elements; and LA-ICP-MS analyses for minor and trace elements. The host rock of investigated gems is represented by a Mg-calcite bearing marble, belonging to the Suretta nappe and composed of blue diopside, lizardite, phlogopite, forsterite, Ca-Mg-amphibole, and thomsonite; the rock was metamorphosed by the intrusion of Masino-Bregaglia pluton. The diopside is generally found in the core of veins in contact with green–blue tremolite and, more externally, with green–yellowish lizardite. The diopside samples show opaque diaphaneity, are inert to long and short-waves UV radiation, and their specific density varies between 3.24 and 3.30 g/cm3 while medium refraction between 1.680–1.683. The diopside shows a polycrystalline texture with interstitial Mg-calcite which acts as binder. The characteristic blue–turquoise color is mainly determined by traces of V and subordinately of Fe, Mn, Cr and Ti. The contents of V and Ti show a good positive correlation. The minerals associated with diopside in the lenticular veins also show enrichments in V. The blue diopside of the Sissone valley could certainly present a good commercial value, but unfortunately it is difficult to reach the outcrop sites.


Nafta-Gaz ◽  
2021 ◽  
Vol 77 (4) ◽  
pp. 219-226
Author(s):  
Anna Przelaskowska ◽  
◽  
Urszula Zagórska ◽  
Maja Mroczkowska-Szerszeń ◽  
Konrad Ziemianin ◽  
...  

Many trace elements are associated with organic matter. The total organic carbon (TOC) content can be thus calculated basing on the chemical composition measurements. The aim of the presented paper was to evaluate the possibility of estimating the organic matter amount on the basis of trace elements such as: Ni, Cu, Mo, U, V, Zn, Cr, Sr, Pb and Co, for Silurian black shales. Correlations between individual elements and total organic carbon were analysed. Next, mathematical models allowing to calculate the amount of organic matter based on the content of elements significantly related to TOC were constructed. Both more accurate chemical composition analyses (ICP-MS mass spectrometry method) and measurements of lower detectability performed with portable X-ray fluorescence spectrometer EDXRF were used. The relationships between the content of trace elements and the total organic carbon content TOC were found for such elements as: V, Cu, U, Ni, Mo, Cr (ICP-MS) and V, Cu , Cr and Ni (XRF). Mathematical models allowing for TOC quantification based on trace elements, characterized by determination coefficients R2 from 0.84 to 0.92 (for ICP MS method) and from 0.75 to 0.78 (for XRF method) were obtained with the use of the multiple regression method. The mathematical models allow to calculate the content of organic matter TOC for Silurian black shales on the basis of trace element data obtained by both mass spectrometry ICP-MS and X-ray fluorescence spectrometry EDXRF. The possibility of using measurements made with a portable X-ray fluorescence spectrometer is particularly important. Such measurements are fast and can be carried out on cuttings during the drilling process. Models based on XRF results therefore allow for quick modelling of the TOC content during the drilling process.


2016 ◽  
Vol 32 (3) ◽  
pp. 67-92
Author(s):  
Katarzyna Stanienda

AbstractThis article presents the results of studies of carbonate rock samples that came from all members of the Górażdże Beds (Lower Muschelkalk – Middle Triassic), taken from the area of the Opole Silesia. Researches allowed the types of mineral phases which built the analyzed rocks to be determined. The limestone samples were collected in the Ligota Dolna Quarry, Strzelce Opolskie Quarry, Wysoka Quarry and the area of Saint Anne Mountain. Thirteen samples were taken from the Ligota Dolna Deposit, 4 samples – in the Strzelce Opolskie Quarry and 5 samples – in the area of St. Anne Mountain. Selected rock samples were examined using a microscope with polarized, transmitted light, FTIR spectroscopy, X-ray diffraction and microprobe measurements E PMA.The results of the study show that the limestone of the Górażdże Beds from the area of Opole Silesia do not exhibit diversified types according to the Ca and Mg content of. They are characterized by the Ca and Mg high purity of geochemical composition, as well as the domination of the low magnesium calcite. There are lower contents of carbonate phases rich in magnesium – high magnesium calcite (high-Mg calcite, which is also known as magnesio-calcite) and dolomite. The majority of the data was obtained through the results of the FTIR spectroscopy and microprobe measurements. Some information gave the results of microscopic analysis. The results of X-ray diffraction indicate the occurrence only low magnesium calcite in the studied samples. Dolomite was identified in some samples of Górażdże Beds and high magnesium calcite – in sample of the Wysoka Micrite Member. Smaller amounts of non-carbonate phases occurred in the analyzed rocks. Quartz, chalcedony, feldspars, micas and clay minerals were identified among the non-carbonate phases.The small diversification of the geochemical composition of the Górażdże limestones could be connected with their sedimentation environment conditions. These rocks represent the type of barrier sediments, which were formed during the sea transgression.


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1044
Author(s):  
Katarzyna Jadwiga Stanienda-Pilecki

The purpose of this article was to present the theory of the possibility of using limestone sorbents containing carbonate minerals with increased Mg content in processes of flue gas desulfurization in power stations. Data obtained as a result of the conducted research show that the analyzed Triassic (Muschelkalk) limestones of the south-west part of Poland are built of the following carbonate minerals: low magnesium calcite, high magnesium calcite, dolomite and huntite. These carbonate minerals are characterized by various magnesium contents. The increased content of magnesium in the sorbent has a positive effect on the technological process of flue gas desulfurization using the dry method, especially in the case of desulfurization with the application of Fluidized Bed Reactors. The positive influence of magnesium’s presence in sorbent in the desulfurization process is connected with the decarbonization of carbonate phases with magnesium at temperatures similar to the dolomite decarbonization temperatures, which are, thus, lower than typical for low magnesium calcite. The process would be easier because the structure of a solid solution containing magnesium ions, with a smaller ion radius to calcium ions, is unstable and the decomposition of these phases runs easier and faster. Therefore, the desulfurization process starts earlier and is more effective.


Sign in / Sign up

Export Citation Format

Share Document