scholarly journals Mineral Phases in Carbonate Rocks of the Górażdże Beds from the Area of Opole Silesia

2016 ◽  
Vol 32 (3) ◽  
pp. 67-92
Author(s):  
Katarzyna Stanienda

AbstractThis article presents the results of studies of carbonate rock samples that came from all members of the Górażdże Beds (Lower Muschelkalk – Middle Triassic), taken from the area of the Opole Silesia. Researches allowed the types of mineral phases which built the analyzed rocks to be determined. The limestone samples were collected in the Ligota Dolna Quarry, Strzelce Opolskie Quarry, Wysoka Quarry and the area of Saint Anne Mountain. Thirteen samples were taken from the Ligota Dolna Deposit, 4 samples – in the Strzelce Opolskie Quarry and 5 samples – in the area of St. Anne Mountain. Selected rock samples were examined using a microscope with polarized, transmitted light, FTIR spectroscopy, X-ray diffraction and microprobe measurements E PMA.The results of the study show that the limestone of the Górażdże Beds from the area of Opole Silesia do not exhibit diversified types according to the Ca and Mg content of. They are characterized by the Ca and Mg high purity of geochemical composition, as well as the domination of the low magnesium calcite. There are lower contents of carbonate phases rich in magnesium – high magnesium calcite (high-Mg calcite, which is also known as magnesio-calcite) and dolomite. The majority of the data was obtained through the results of the FTIR spectroscopy and microprobe measurements. Some information gave the results of microscopic analysis. The results of X-ray diffraction indicate the occurrence only low magnesium calcite in the studied samples. Dolomite was identified in some samples of Górażdże Beds and high magnesium calcite – in sample of the Wysoka Micrite Member. Smaller amounts of non-carbonate phases occurred in the analyzed rocks. Quartz, chalcedony, feldspars, micas and clay minerals were identified among the non-carbonate phases.The small diversification of the geochemical composition of the Górażdże limestones could be connected with their sedimentation environment conditions. These rocks represent the type of barrier sediments, which were formed during the sea transgression.

Palaios ◽  
2020 ◽  
Vol 35 (10) ◽  
pp. 421-431
Author(s):  
LAURA J. COTTON ◽  
DAVID EVANS ◽  
SIMON J. BEAVINGTON-PENNEY

ABSTRACT Nummulites were one of the most abundant and widespread larger benthic foraminifera of the Paleogene, however, confusion remains within the literature as to whether their original test mineralogy was high or low magnesium calcite. As the number of studies using proxies based on Nummulites and related nummulitid geochemistry increase, it is essential to have a firm understanding of test composition to assess preservation within potential samples, and to interpret results. Here we employ a combination of X-ray diffraction, Fourier transform infra-red spectroscopy, and laser ablation ICPMS to determine magnesium content across exceptionally preserved and poorly preserved fossil material as well as modern examples of nummulitids—showing conclusively a primary intermediate to high magnesium calcite composition. This composition appears to be closely related to fluctuating ocean chemistry through the Paleogene. Using these results as an indicator of preservation we examine variation in trace element data across a suite of samples, and introduce the concept of the preservagram, a method of quickly visualizing different styles of carbonate diagenesis. Understanding the original mineralogy of nummulitids and, therefore, the extent to which specimens have been diagenetically altered, is essential as larger foraminifera are increasingly used in geochemical studies.


1971 ◽  
Vol 38 (296) ◽  
pp. 481-487 ◽  
Author(s):  
H. A. Gunatilaka ◽  
Roger Till

SummaryA precise and accurate X-ray diffraction method has been developed whereby the weight percentages of aragonite and low- and high-magnesium calcite are determined from the integrated peak areas of spiked and unspiked samples. The spike mixture was prepared from organisms extracted from the samples to be analysed. Use of a spiking method also avoided the preparation of working curves from artificial mixtures of carbonate minerals, which may not have the same diffraction behaviour as the unknowns. A test of the precision of the method indicates the following coefficients of variation: aragonite, 1·4 %; low-magnesium calcite, 1·5 %; high-magnesium calcite, 7·8 %. A test of the accuracy of the method indicates no significant bias in any of the carbonate results, except in samples where high-magnesium calcite values are below 10 %. Quartz may also be determined by this method (coefficient of variation 23·9 %; positive bias in values greater than 10 %).


2017 ◽  
Vol 62 (3) ◽  
pp. 459-482
Author(s):  
Katarzyna Stanienda-Pilecki

AbstractThis article presents the results of studies of Triassic (Muschelkalk) carbonate rock samples of the Terebratula Beds taken from the area of the Polish part of the Germanic Basin. It is the area of Opole Silesia. The rocks were studied in the term of possibility of limestone with magnesium application in desulfurization of flue gases executed in power plants. Characteristic features of especially carbonate phases including magnesium-low-Mg calcite, high-Mg calcite, dolomite and huntite were presented in the article. They were studied to show that the presence of carbonate phases with magnesium, especially high-Mg calcite makes the desulfurization process more effective. Selected rock samples were examined using a microscope with polarized, transmitted light, X-ray diffraction, microprobe measurements and FTIR spectroscopy. The results of studies show a domination of low magnesium calcite in the limestones of the Terebratula Beds. In some samples dolomite and lower amounts of high-Mg calcite occurred. Moreover, huntite was identified. The studies were very important, because carbonate phases like high-Mg calcite and huntite which occurred in rocks of the Triassic Terebratula Beds were not investigated in details by other scientists but they presence in limestone sorbent could influence the effectiveness of desulfurization process.


Radiocarbon ◽  
2010 ◽  
Vol 52 (2) ◽  
pp. 735-751 ◽  
Author(s):  
Katerina Douka ◽  
Robert E M Hedges ◽  
Thomas F G Higham

One critical variable in the successful application of radiocarbon dating is the effective removal of carbonaceous contaminants. In the case of marine carbonates, contamination appears usually in the form of secondary low-magnesium calcite, the stable polymorph of calcium carbonate and byproduct of the post-mortem recrystallization or replacement of the autochthonous phase, originally in the form of high-magnesium calcite or aragonite. Depending on the nature of the depositional environment, the secondary phase may be contemporary in age with the original shell carbonate and may have even been derived from it by dissolution-recrystallization processes, or can be an exogenous contaminant of younger or older age. The limited ability of current pretreatment protocols to detect and remove the secondary mineralogical phases prior to dating carbonates has been one of the reasons marine shell and coral 14C determinations are often difficult to validate in terms of their reliability. We have developed a new pretreatment protocol designed to achieve greater reliability and accuracy in the dating of this material. The method entails 2 steps. The first one involves the improved detection and quantification of secondary calcite in aragonite using X-ray diffraction, at a precision of ∼0.1% and ∼0.8%, respectively. Next, where this is required, a novel density separation step using non-toxic heavy liquids (CarDS) is applied to the diagenetic sample. This enables the clear separation of calcite and aragonite, with only the latter kept for dating. We have applied the new steps, screening and separation, on standard and archaeological examples and our initial results suggest that it is successful and reproducible. In this paper, we describe the method and initial results.


2016 ◽  
Vol 869 ◽  
pp. 191-194
Author(s):  
Carolina del Roveri ◽  
R.A. Cunha ◽  
Antenor Zanardo ◽  
Letícia Hirata Godoy ◽  
Maria Margarita Torres Moreno ◽  
...  

The Santa Gertrudes ́ Ceramic Polo is the Brazilian region with national and international prominence in the manufacturing of ceramic tiles. Some raw materials used by ceramic industry and coatings industries in this region were characterized in terms of chemical-mineralogical and microscopic view, in order to promote the best technological characterization of them. For this, chemical analysis of major elements and trace X-ray diffraction and microscopic analysis by SEM, TEM and Electron microprobe were performed by ICP-MS. The results showed that the raw materials commonly referred to as "clays" are actually constituted by various mineral phases, which directly influence the properties of the same ceramics. Also showed that, by virtue of this constitution, different formulations can be developed, using the best raw materials found in the region of Santa Gertrudes, SP.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 218
Author(s):  
Carlos Alberto Ríos-Reyes ◽  
German Alfonso Reyes-Mendoza ◽  
José Antonio Henao-Martínez ◽  
Craig Williams ◽  
Alan Dyer

This study reports for the first time the geologic occurrence of natural zeolite A and associated minerals in mudstones from the Cretaceous Paja Formation in the urban area of the municipality of Vélez (Santander), Colombia. These rocks are mainly composed of quartz, muscovite, pyrophyllite, kaolinite and chlorite group minerals, framboidal and cubic pyrite, as well as marcasite, with minor feldspar, sulphates, and phosphates. Total organic carbon (TOC), total sulfur (TS), and millimeter fragments of algae are high, whereas few centimeters and not biodiverse small ammonite fossils, and other allochemical components are subordinated. Na–A zeolite and associated mineral phases as sodalite occur just beside the interparticle micropores (honeycomb from framboidal, cube molds, and amorphous cavities). It is facilitated by petrophysical properties alterations, due to processes of high diagenesis, temperatures up to 80–100 °C, with weathering contributions, which increase the porosity and permeability, as well as the transmissivity (fluid flow), allowing the geochemistry remobilization and/or recrystallization of pre-existing silica, muscovite, kaolinite minerals group, salts, carbonates, oxides and peroxides. X-ray diffraction analyses reveal the mineral composition of the mudstones and scanning electron micrographs show the typical cubic morphology of Na–A zeolite of approximately 0.45 mμ in particle size. Our data show that the sequence of the transformation of phases is: Poorly crystalline aluminosilicate → sodalite → Na–A zeolite. A literature review shows that this is an unusual example of the occurrence of natural zeolites in sedimentary marine rocks recognized around the world.


2022 ◽  
Vol 1049 ◽  
pp. 218-223
Author(s):  
Aleksandr S. Kazachenko ◽  
Yuriy N. Malyar ◽  
Anna S. Kazachenko

Sulfated derivatives of polysaccharides have anticoagulant, hypolipedimic and other biological activity. In this work, a complex mixed ester of galactomannan, its sulfate-citrate, was obtained for the first time. The introduction of citrate and sulfate groups was proved by FTIR spectroscopy by the appearance of corresponding absorption bands. It was shown by X-ray diffraction that the introduction of the citrate group leads to the amorphization of the galactomannan structure.


2021 ◽  
Vol 11 (5) ◽  
pp. 724-731
Author(s):  
Hemin Liu ◽  
Qian Huang ◽  
Liang Zhao

This study investigates the deterioration of concrete containing limestone powder exposed to sulfate solution under ambient temperature (20~25 °C). Microstructure and mineral phases within the attacked concrete were measured by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). It was found that the addition of limestone powder increased the initial porosity of concrete. Consequently, a larger amount of SO2–4 ions diffused into the concrete containing limestone powder, and their degree of deterioration caused by sulfate attack increased with the increase in limestone powder content. At ambient temperature, gypsum and ettringite were the major attack products, respectively within the surface and nearsurface portions of concrete containing limestone powder, which was consistent with the products of sulfate attack within concrete without limestone powder. Therefore, the type and distribution of the attack products in concrete had not been revised due to the addition of limestone powder. Nevertheless, the adverse influence of limestone powder on the sulfate resistance of concrete, even at ambient temperature, should be considered. Furthermore, effective measures should be implemented to improve the durability of concrete containing limestone powder in this environment.


1966 ◽  
Vol 36 (276) ◽  
pp. 1029-1060 ◽  
Author(s):  
G. J. H. McCall

SummaryThe petrography of the Mount Padbury meteorite, previously briefly recorded, is described in some detail. Both the metalliferous host material of the mesosiderite and the varied range of silicate-rich, virtually metal-free enclaves (including both familiar achondrite material and unfamiliar achondrite material) are described. Eucrite, brecciated eucrite, and a peculiar ‘shocked’ form of eucrite (resembling some terrestrial flaser-gabbros) are the calcium-rich achondrite types represented; hypersthene achondrite (including typical diogenite material and unfamiliar material) and olivine achondrite (granular aggregates of olivine not entirely similar to the unique chassignite and single crystals up to 4 in. in length) are the calcium-poor achondrite types represented. The eucrite displays more or less uniform mineralogy, but the mineral constituents are present in varying proportions, and there is a wide range of textural variations recognized. The silicate grain fragments enclosed in the metallic reticulation to form the mesosiderite host material are, significantly, entirely of minerals seen within the achondrite enclaves—plagioclase, hypersthene, pigeonite, olivine, and tridymite.These results include microscopic analysis of thin sections and polished sections, X-ray diffraction studies, optical determination of refractive indices using mineral grain mounts, and chemical analyses.The wider implications of this new and unique meteorite find are briefly considered.


Sign in / Sign up

Export Citation Format

Share Document