scholarly journals Theranostic Nanoplatform to Target Macrophages Enables the Inhibition of Atherosclerosis Progression and Fluorescence Imaging of Plaque

Author(s):  
Qi Wang ◽  
Yong Wang ◽  
Siwen Liu ◽  
Xuan Sha ◽  
Xiaoxi Song ◽  
...  

Abstract Background: Rupture of atherosclerotic plaque can cause acute malignant heart and cerebrovascular events, such as acute coronary heart disease, stroke and so on, which seriously threaten the safety of human life and property. Therefore, the early diagnosis and inhibition of atherosclerotic plaque progress still be a vital task. Results: In this study, we presented the development of composite mesoporous silica nanoparticle (CMSN) - based nanomedicines (NMs) (Ru(bpy)3@SiO2-mSiO2@SRT1720@ AntiCD36, CMSN@SRT@Anti) for accurate diagnosis and treatment of atherosclerosis. In vitro cell experiments showed that both RAW264.7 and ox-LDL-stimulated RAW264.7 cells could significantly uptake CMSN@SRT@Anti. Conversely, little fluorescence signal could be observed in CMSN@SRT group, showing the excellent targeting ability of CMSN@SRT@Anti to CD36 on macrophage. Additionally, such fluorescence signal was significantly stronger in ox-LDL-stimulated RAW264.7 cells, showing the ox-LDL can promote the upregulation of CD36 expression on macrophages to produce a stronger binding signal. For another, compared with free SRT1720, CMSN@SRT@Anti had a better and more significant effect on the inhibition of macrophage foaming process, which indicated that drug-carrying mesoporous silicon with targeting ability could enhance the efficacy of SRT1720. Animal experimental results showed that after the abdominal injection of CMSN@SRT@Anti, the aortic lesions of ApoE-/-mice could be observed with obvious and persistent fluorescence signals. After 4 weeks post- treatment, the serum total cholesterol, aortic plaque status and area were significantly improved in the mouse, and the effect was better than that in the free SRT1720 group or the CMSN@SRT group. Conclusions: The designed CMSN@SRT@Anti with excellent biocompatibility, high-performance and superior atherosclerosis-targeting ability has great potential for accurate identification and targeted therapy of atherosclerotic diseases.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Qi Wang ◽  
Yong Wang ◽  
Siwen Liu ◽  
Xuan Sha ◽  
Xiaoxi Song ◽  
...  

Abstract Background Rupture of atherosclerotic plaque can cause acute malignant heart and cerebrovascular events, such as acute coronary heart disease, stroke and so on, which seriously threaten the safety of human life and property. Therefore, the early diagnosis and inhibition of atherosclerotic plaque progress still be a vital task. Results In this study, we presented the development of composite mesoporous silica nanoparticle (Ru(bpy)3@SiO2-mSiO2, CMSN)-based nanomedicines (NMs) (Ru(bpy)3@SiO2-mSiO2@SRT1720@AntiCD36, CMSN@SRT@Anti) for accurate diagnosis and treatment of atherosclerosis (AS). In vitro cell experiments showed that both RAW264.7 and oxidized low density lipoprotein (ox-LDL)-stimulated RAW264.7 cells could significantly uptake CMSN@SRT@Anti. Conversely, little fluorescence signal could be observed in CMSN@SRT group, showing the excellent targeting ability of CMSN@SRT@Anti to Class II scavenger receptor, CD36 on macrophage. Additionally, such fluorescence signal was significantly stronger in ox-LDL-stimulated RAW264.7 cells, which might benefit from the upregulated expression of CD36 on macrophages after ox-LDL treatment. For another, compared with free SRT1720, CMSN@SRT@Anti had a better and more significant effect on the inhibition of macrophage foaming process, which indicated that drug-carrying mesoporous silicon with targeting ability could enhance the efficacy of SRT1720. Animal experimental results showed that after the abdominal injection of CMSN@SRT@Anti, the aortic lesions of ApoE-/-mice could be observed with obvious and persistent fluorescence signals. After 4 weeks post-treatment, the serum total cholesterol, aortic plaque status and area were significantly improved in the mouse, and the effect was better than that in the free SRT1720 group or the CMSN@SRT group. Conclusions The designed CMSN@SRT@Anti with excellent biocompatibility, high-performance and superior atherosclerosis-targeting ability has great potential for accurate identification and targeted therapy of atherosclerotic diseases. Graphic abstract


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1512
Author(s):  
Yuhan Liu ◽  
Meiling Zhang ◽  
Jinjun Cheng ◽  
Yue Zhang ◽  
Hui Kong ◽  
...  

Glycyrrhizae Radix et Rhizoma (GRR) is one of the commonly used traditional Chinese medicines in clinical practice, which has been applied to treat digestive system diseases for hundreds of years. GRR is preferred for anti-gastric ulcer, however, the main active compounds are still unknown. In this study, GRR was used as precursor to synthesize carbon dots (CDs) by a environment-friendly one-step pyrolysis process. GRR-CDs were characterized by using transmission electron microscopy, high-resolution TEM, fourier transform infrared, ultraviolet-visible and fluorescence spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and high-performance liquid chromatography. In addition, cellular toxicity of GRR-CDs was studied by using CCK-8 in RAW264.7 cells, and the anti-gastric ulcer activity was evaluated and confirmed using mice model of acute alcoholic gastric ulcer. The experiment confirmed that GRR-CDs were the spherical structure with a large number of active groups on the surface and their particle size ranged from 2 to 10 nm. GRR-CDs had no toxicity to RAW264.7 cells at concentration of 19.5 to 5000 μg/mL and could reduce the oxidative damage of gastric mucosa and tissues caused by alcohol, as demonstrated by restoring expression of malondialdehyde, superoxide dismutase and nitric oxide in serum and tissue of mice. The results indicated the explicit anti-ulcer activity of GRR-CDs, which provided a new insights for the research on effective material basis of GRR.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 960
Author(s):  
Haibo Hu ◽  
Yau Lee-Fong ◽  
Jinnian Peng ◽  
Bin Hu ◽  
Jialin Li ◽  
...  

The roots of Fissistigma oldhamii (FO) are widely used as medicine with the effect of dispelling wind and dampness, promoting blood circulation and relieving pains, and its fruits are considered delicious. However, Hakka people always utilize its above-ground parts as a famous folk medicine, Xiangteng, with significant differences from literatures. Studies of chemical composition showed there were multiple aristolactams that possessed high nephrotoxicity, pending evaluation research about their distribution in FO. In this study, a sensitive, selective, rapid and reliable method was established to comparatively perform qualitative and semi-quantitative analysis of the constituents in roots, stems, leaves, fruits and insect galls, using an Ultra-High-Performance Liquid Chromatography coupled with Hybrid Quadrupole Orbitrap Mass Spectrometry (UPLC-Q-Exactive Orbitrap MS, or Q-Exactive for short). To make more accurate identification and comparison of FO chemicals, all MS data were aligned and screened by XCMS, then their structures were elucidated according to MSn ion fragments between the detected and standards, published ones or these generated by MS fragmenter. A total of 79 compounds were identified, including 33 alkaloids, 29 flavonoids, 11 phenylpropanoids, etc. There were 54 common components in all five parts, while another 25 components were just detected in some parts. Six toxic aristolactams were detected in this experiment, including aristolactam AII, AIIIa, BII, BIII, FI and FII, of which the relative contents in above-ground stems were much higher than roots. Meanwhile, multivariate statistical analysis was performed and showed significant differences both in type and content of the ingredients within all FO parts. The results implied that above-ground FO parts should be carefully valued for oral administration and eating fruits. This study demonstrated that the high-resolution mass spectrometry coupled with multivariate statistical methods was a powerful tool in compound analysis of complicated herbal extracts, and the results provide the basis for its further application, scientific development of quality standard and utilization.


2018 ◽  
Vol 11 (1) ◽  
pp. 747-752 ◽  
Author(s):  
Bao Zhu ◽  
Xiaohan Wu ◽  
Wen-Jun Liu ◽  
Hong-Liang Lu ◽  
David Wei Zhang ◽  
...  

2020 ◽  
Vol 400 ◽  
pp. 125958
Author(s):  
Yen-Ju Wu ◽  
Yu-An Chen ◽  
Chun-Lung Huang ◽  
Jing-Ting Su ◽  
Cheng-Ting Hsieh ◽  
...  

2018 ◽  
Vol 115 (16) ◽  
pp. 4158-4163 ◽  
Author(s):  
Gregor Oemer ◽  
Katharina Lackner ◽  
Katharina Muigg ◽  
Gerhard Krumschnabel ◽  
Katrin Watschinger ◽  
...  

Current strategies used to quantitatively describe the biological diversity of lipids by mass spectrometry are often limited in assessing the exact structural variability of individual molecular species in detail. A major challenge is represented by the extensive isobaric overlap present among lipids, hampering their accurate identification. This is especially true for cardiolipins, a mitochondria-specific class of phospholipids, which are functionally involved in many cellular functions, including energy metabolism, cristae structure, and apoptosis. Substituted with four fatty acyl side chains, cardiolipins offer a particularly high potential to achieve complex mixtures of molecular species. Here, we demonstrate how systematically generated high-performance liquid chromatography-mass spectral data can be utilized in a mathematical structural modeling approach, to comprehensively analyze and characterize the molecular diversity of mitochondrial cardiolipin compositions in cell culture and disease models, cardiolipin modulation experiments, and a broad variety of frequently studied model organisms.


MRS Advances ◽  
2016 ◽  
Vol 1 (53) ◽  
pp. 3553-3564 ◽  
Author(s):  
Khosrow Ghavami ◽  
Arash Azadeh

ABSTRACTFour decades of advanced research about Non-Conventional Materials and Technologies (NOCMAT) such as bamboo and composites reinforced with natural fibers have shown that it is now possible to produce and use high performance NOCMAT. Bamboo and composites reinforced with vegetable fibers are capable, meeting most engineering demand in terms of strength, stiffness, toughness and energy absorption capability. The greatest challenge of the 21st century is the need for cost-effective, durable and eco-friendly construction materials that will meet the global needs of infrastructure regeneration and rehabilitation which alone can enhance the quality of life for all the people of the world. This paper summarizes some results of judicious combination of different matrix reinforced with vegetable fibers, especially bamboo. These sustainable ecological materials are strong, ductile and capable of absorbing large amounts of energy. They could find extensive applications in the engineering particularly in developing countries. Specifically, the development of durable composites reinforced with vegetable fibers and bamboo poses an important challenge to the science and skills of engineering. This challenge could create the most useful, eco-friendly construction materials backed by an endless supply of renewable natural resources. In addition the paper presents results of some ongoing research concerning bamboo and how vegetable fibers such as hemp plant, before the invention of Nylon was the most used materials in all aspects of human life around the globe and why it was banned.


2020 ◽  
Author(s):  
Florian Ricour ◽  
Arthur Capet ◽  
Fabrizio D'Ortenzio ◽  
Bruno Delille ◽  
Marilaure Grégoire

Abstract. The Deep Chlorophyll Maximum (DCM) is a well known feature of the global ocean. However, its description and the study of its formation are a challenge, especially in the peculiar Black Sea environment. The retrieval of Chlorophyll a (Chla) from fluorescence (Fluo) profiles recorded by Biogeochemical-Argo (BGC-Argo) floats is not trivial in the Black Sea, due to the very high content of Colored Dissolved Organic Matter (CDOM) which contributes to the fluorescence signal and produces an apparent increase of the Chla concentration with depth. Here we revised Fluo correction protocols for the Black Sea context using co-located in-situ High-Performance Liquid Chromatography (HPLC) and BGC-Argo measurements. The processed set of Argo Chla data (2014–2019) is then used to provide a systematic description of the seasonal DCM dynamics in the Black Sea, and to explore different hypotheses concerning the mechanisms underlying its development. Our results show that the corrections applied to Chla profiles are consistent with HPLC data. In the Black Sea, the DCM is initiated in March, throughout the basin, at a pycnal level set by the previous winter mixed layer. The DCM then remains attached to this particular layer until the end of September. The spatial homogeneity of this feature suggests a self-sustaining DCM structure, locally influencing environmental conditions rather than adapting instantaneously to external factors. In summer, the DCM concentrates around 50 to 65 % of the total chlorophyll content around a depth of 30 m, where light conditions ranged from 0.5 to 4.5 % of surface incoming irradiance. In October, as the DCM structure is gradually eroded, a longitudinal gradient appears in the DCM pycnal depth, indicating that autumnal mixing induces a relocation of the DCM which is this time driven by regional factors, such as nutrients lateral loads and turbidity.


Sign in / Sign up

Export Citation Format

Share Document