scholarly journals Novel Carbon Dots Derived from Glycyrrhizae Radix et Rhizoma and Their Anti-Gastric Ulcer Effect

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1512
Author(s):  
Yuhan Liu ◽  
Meiling Zhang ◽  
Jinjun Cheng ◽  
Yue Zhang ◽  
Hui Kong ◽  
...  

Glycyrrhizae Radix et Rhizoma (GRR) is one of the commonly used traditional Chinese medicines in clinical practice, which has been applied to treat digestive system diseases for hundreds of years. GRR is preferred for anti-gastric ulcer, however, the main active compounds are still unknown. In this study, GRR was used as precursor to synthesize carbon dots (CDs) by a environment-friendly one-step pyrolysis process. GRR-CDs were characterized by using transmission electron microscopy, high-resolution TEM, fourier transform infrared, ultraviolet-visible and fluorescence spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and high-performance liquid chromatography. In addition, cellular toxicity of GRR-CDs was studied by using CCK-8 in RAW264.7 cells, and the anti-gastric ulcer activity was evaluated and confirmed using mice model of acute alcoholic gastric ulcer. The experiment confirmed that GRR-CDs were the spherical structure with a large number of active groups on the surface and their particle size ranged from 2 to 10 nm. GRR-CDs had no toxicity to RAW264.7 cells at concentration of 19.5 to 5000 μg/mL and could reduce the oxidative damage of gastric mucosa and tissues caused by alcohol, as demonstrated by restoring expression of malondialdehyde, superoxide dismutase and nitric oxide in serum and tissue of mice. The results indicated the explicit anti-ulcer activity of GRR-CDs, which provided a new insights for the research on effective material basis of GRR.

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 744 ◽  
Author(s):  
Jinyu Huang ◽  
Feifei Li ◽  
Baozhong Liu ◽  
Peng Zhang

The hydrogen generated via the water splitting method is restricted by the high level of theoretical potential exhibited by the anode. The work focuses on synthesizing a bifunctional catalyst with a high efficiency, that is, a nickel phosphide doped with the reduced graphene oxide nanosheets supported on the Ni foam (Ni2P/rGO/NF), via the hydrothermal approach together with the calcination approach specific to the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). The Raman, X-Ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscope (TEM), Scanning Electron Microscopy (SEM), High-Resolution Transmission Electron Microscopy (HRTEM), as well as elemental mapping, are adopted to study the composition and morphology possessed by Ni2P/rGO/NF. The electrochemical testing is performed by constructing a parallel two-electrode electrolyzer (Ni2P/rGO/NF||Ni2P/rGO/NF). Ni2P/rGO/NF||Ni2P/rGO/NF needs a voltage of only 1.676 V for driving 10 mA/cm2, which is extremely close to Pt/C/NF||IrO2/NF (1.502 V). It is possible to maintain the current density for no less than 30 hours. It can be demonstrated that Ni2P/rGO/NF||Ni2P/rGO/NF has commercial feasibility, relying on the strong activity and high stability.


2020 ◽  
Vol 10 (11) ◽  
pp. 1777-1787
Author(s):  
Yadian Xie ◽  
Shanshan Wang ◽  
Ning Fu ◽  
Yan Yang ◽  
Xingliang Liu ◽  
...  

Carbon dots (CDs) also nitrogen-doped CDs (N-CDs) were produced by green hydrothermal synthesis using Pea and ethanediamine as the carbon and nitrogen source, separately. Transmission electron microscopy (TEM) images displayed that the prepared CDs and N-CDs were well dispersed, had a spherical morphology. X-ray diffraction (XRD) figures of CDs and N-CDs presented a graphitic amorphous structure. Fourier transform infrared spectroscopy (FT-IR) verified that CDs and N-CDs carried many different hydrophilic groups (for example hydroxyl, carboxyl/carbonyl, amide, amino groups) on the surface, X-ray photoelectron spectroscopy (XPS) together verified this result. However, the optical properties and fluorescence quantum yield for N-CDs were obviously superior to those of CDs. Furthermore, the prepared N-CDs displayed outstanding advantages including low toxicity, satisfactory biocompatibility, and excellent chemical stability. More prominently, the prepared N-CDs could detect Hg2+ ions with high sensitivity and selectivity in both water samples and HeLa cells.


NANO ◽  
2014 ◽  
Vol 09 (08) ◽  
pp. 1450097 ◽  
Author(s):  
ZENG BIN ◽  
LONG HUI

The nanocomposites of graphene loaded– ZnS nanoflowers (GR– ZnS ) had been successfully prepared. Materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectra (FTIR), photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS) spectra. A possible formation mechanism of this architecture was proposed. The experimental results revealed that these nanoflowers exhibited excellent UV-light photocatalytic activities for pollutant methyl orange (MO) dye degradation. These new nanostructures were expected to show considerable potential applications in the water treatment.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Ming Sun ◽  
Ting Lin ◽  
Gao Cheng ◽  
Fei Ye ◽  
Lin Yu

To functionalize MnO2with foreign ions is one of the commonly used methods to improve the adsorption/oxidation properties of MnO2. Boron-doped MnO2was prepared by the reaction of MnSO4, KMnO4, and boric acid by a facile hydrothermal method. Boron-MnO2was characterized by X-ray diffraction (XRD), Raman spectra, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), selected area electron diffraction pattern (SAED), and X-ray photo-electron spectroscopy (XPS) techniques. The characterization of XPS and EDX confirms that boron has been doped into MnO2, but the boron dopant has no obvious effect on the crystallization of MnO2as shown by the results of XRD and Raman characterization. The boron-doped MnO2nanorods display high performance in the methyl orange degradation with a decolorization degree of 90% in 2 min (5% B-MnO2dosage, 5 mg; methyl orange concentration, 20 mg L−1).


2012 ◽  
Vol 1408 ◽  
Author(s):  
Cagla Ozgit ◽  
Fatma Kayaci ◽  
Inci Donmez ◽  
Engin Cagatay ◽  
Tamer Uyar ◽  
...  

ABSTRACTAl2O3 and AlN nanotubes were fabricated by depositing conformal thin films via atomic layer deposition (ALD) on electrospun nylon 66 (PA66) nanofiber templates. Depositions were carried out at 200°C, using trimethylaluminum (TMAl), water (H2O), and ammonia (NH3) as the aluminum, oxygen, and nitrogen precursors, respectively. Deposition rates of Al2O3 and AlN at this temperature were ∼1.05 and 0.86 Å/cycle. After the depositions, Al2O3- and AlN-coated nanofibers were calcinated at 500°C for 2 h in order to remove organic components. Nanotubes were characterized by using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). AlN nanotubes were polycrystalline as determined by high resolution TEM (HR-TEM) and selected area electron diffraction (SAED). TEM images of all the samples reported in this study indicated uniform wall thicknesses.


Author(s):  
Anil Kumar Yedluri ◽  
Hee-Je Kim

CoO-ZnO-based composites have attracted considerable attention for the development of energy storage devices because of their multifunctional characterization and ease of integration with existing components. This paper reports the synthesis of CoO@ZnO (CZ) nanostructures on Ni foam by the CBD method for facile and eco-friendly supercapacitor applications. The formation of a CoO@ZnO electrode functioned with cobalt, zinc, nickel and oxygen groups was confirmed by X-ray diffraction, X-ray photoelectron spectroscopy, low and high-resolution of scanning electron microscopy, and transmission electron microscopy. The as-synthesized hierarchical nanocorn skeleton-like structure of CoO@ZnO-3h (CZ3h) electrode delivered a higher specific capacitance of 1136 F/g at a current density of 3 A/g with outstanding cycling stability, showing 98.3% capacitance retention over 3000 cycles in an aqueous 2 M KOH electrolyte solution. This retention was significantly better than that of other prepared electrodes, such as CoO (CO), ZnO (ZO), CoO@ZnO-1h (CZ1h), and CoO@ZnO-7h (CZ7h) (274, 383, 240 and 537 F/g, respectively). This superior capacitance was attributed to the ideal surface morphology of CZ3h, which is responsible for the rapid electron/ion transfer between the electrolyte and electrode surface area. The enhanced features of the CZ3h electrode highlight potential applications in high performance supercapacitors, solar cells, photocatalysis, and electrocatalysis.


Catalysts ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 948 ◽  
Author(s):  
Thinnaphat Poonsawat ◽  
Thanyaphat Techalertmanee ◽  
Peerapong Chumkaeo ◽  
Isti Yunita ◽  
Titiya Meechai ◽  
...  

Iron oxide/carbon nanocatalysts were successfully synthesized by the calcination of ferrocenium at high temperatures ranging from 500 to 900 °C. Then the synthesized nanocomposites were characterized by XRD (X-Ray Diffraction), TEM (Transmission Electron Microscopy), VSM (Vibrating-Sample Magnetometry), BET (Brunauer-Emmett-Teller surface area measurements), TGA (Thermogravimetric Analysis), XPS (X-Ray Photoelectron Spectroscopy), EPR (Electron Paramagnetic Resonance), and CHN elemental analysis. The prepared nanocatalysts were applied for the decomposition of methylene blue as a model in wastewater treatment. It was unexpected to discover that the prepared nanocatalysts were highly active for the reaction with methylene blue in the dark even though no excess of hydrogen peroxide was added. The nanocatalyst calcined at 800 °C exhibited the rod shape with the best catalytic activity. The nanocatalysts could be reused for 12 times without the significant loss of the catalytic activity.


2010 ◽  
Vol 97-101 ◽  
pp. 2144-2147
Author(s):  
Xin Yu Yang ◽  
Wei Dong Xiang ◽  
Xi Yan Zhang ◽  
Hai Tao Liu

L-Cystine was successfully used as a novel kind of sulfur source to synthesize the nanostructure of ribbon-like Sb2S3. The nanoribbons were usually tens of micronmeters in length, typically 100-300 nm in width. The nanostructure of ribbon-like Sb2S3 were examined using diverse techniques including X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected-area electron diffraction, and high-resolution TEM.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Juan Luo ◽  
Jie Hu ◽  
Meiling Zhang ◽  
Yue Zhang ◽  
Jiashu Wu ◽  
...  

Aim: To evaluate the gastroprotective effects of Nelumbinis Rhizomatis Nodus carbon dots (NRN-CDs) on ethanol-induced gastric ulcers in rats. Materials & methods: NRN-CDs synthesized and characterized by transmission electron microscopy, ultraviolet, fluorescence and Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction and zeta potential analyzer. Their gastroprotective effects toward ethanol-induced gastric ulcers were evaluated in male Sprague–Dawley rats. Results: NRN-CDs showed an average diameter of 2.33 ± 0.42 nm and a lattice spacing of 0.29 nm. Pretreatment with NRN-CDs significantly decreased the ulcer index and attenuated the severity of gastric mucosal damage, indicating that NRN-CDs exerted potent gastric protective effect. Moreover, the gastroprotection effect was related to the regulation of oxidative stress and inflammatory factors. Conclusion: NRN-CDs could be developed as a potential drug for the treatment of gastric ulcers.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2256
Author(s):  
Yanfei Wu ◽  
Jin Mao ◽  
Chuanwei Ao ◽  
Di Sun ◽  
Xiaorui Wang ◽  
...  

Natural toxic contaminants have been recognized as threats to human health. Ustiloxins are the toxic secondary metabolites of fungus generated from rice false smut disease, which are harmful to animal/human reproduction and growth. However, there are rare researches on the control and reduction of ustiloxins through physical, chemical and biological ways. Herein, we demonstrated that photocatalysis of semiconductor nanomaterials could be as a potential way to degrade or mitigate the contamination of ustiloxin A. A kind of wormlike graphitic carbon nitride (g-C3N4) was facilely prepared from modified dicyandiamide precursor via pyrolysis method and characterized by X-ray diffraction, high-resolution transmission electron microscope and X-ray photoelectron spectroscopy etc. It was found that g-C3N4 from modified dicyandiamide precursor showed better activity for ustiloxin A degradation under visible light irradiation than that of pristine g-C3N4. This was ascribed to the lager specific surface area, more uniform microstructure, better photogenerated charges separation and transformation of wormlike g-C3N4 compared with pristine g-C3N4. Most important, the structure of degradation intermediates and the possible pathway were proposed based on the results of high-performance liquid chromatography-mass spectrometry after 80 min photoreaction treatment. Our findings may provide a green, efficient way for ustiloxins mitigation and useful information for future study.


Sign in / Sign up

Export Citation Format

Share Document