scholarly journals Analog/RF Performance of Triple Material Gate Stack-Graded Channel Double Gate-Junctionless Strained-silicon MOSFET with Fixed Charges

Author(s):  
Subba Rao Suddapalli ◽  
Rani Deepika Balavendran Joseph ◽  
Vijaya Durga Chintala ◽  
Gopi Krishna Saramekala ◽  
Srikar D ◽  
...  

Abstract In this paper, analog/radio frequency (RF) electrical characteristics of triple material gate stack-graded channel double gate-Junctionless (TMGS-GCDG-JL) strained-silicon (s-Si) MOSFET with fixed charges is analyzed with the help of Sentaurus TCAD. By varying the various device parameters, the analog/RF performance of the proposed TMGS-GCDG-JL s-Si MOSFET is evaluated in terms of early voltage, transconductance generation factor (TGF), voltage gain, unity current gain frequency ( ft ), unity power gain frequency (fmax ), and gain transconductance frequency product (GTFP). The results confirm that the proposed TMGS-GCDG-JL s-Si MOSFET has superior analog/RF performance compared to the gate stack-graded channel double gate-junctionless (GS-GCDG-JL) s-Si MOSFET. However, the proposed device has less transconductance and less output conductance in comparison with the GS-GCDG-JL s-Si MOSFET in strong inversion region, and reverse trend follows in sub-threshold region.

2021 ◽  
Author(s):  
Subba Rao Suddapalli ◽  
Rani Deepika Balavendran Joseph ◽  
Vijaya Durga Chintala ◽  
Gopi Krishna Saramekala ◽  
Srikar D ◽  
...  

Abstract In this paper, analog/radio frequency (RF) electrical characteristics of triple material gate stackgraded channel double gate-Junctionless (TMGS-GCDGJL) strained-Si (s-Si) MOSFET with fixed charge density is analyzed with the help of Sentaurus TCAD. By varying the various device parameters, the analog/RF performance of the proposed TMGS-GCDG-JL s-Si MOSFET is evaluated in terms of transconductance-generationfactor (TGF), early voltage, voltage gain, unity-powergain frequency ( f max ), unity-current-gain frequency ( f t ), and gain-transconductance frequency product (GTFP). The results confirm that the proposed TMGS-GCDGJL s-Si MOSFET has superior analog/RF performance compared to gate stack-graded channel double gatejunctionless (GS-GCDG-JL) s-Si device. However, the proposed MOSFET has less transconductance and less output conductance when compared with the GS-GCDGJL s-Si device in above threshold region, and reverse trend follows in sub-threshold region.


Silicon ◽  
2021 ◽  
Author(s):  
Suddapalli Subba Rao ◽  
Rani Deepika Balavendran Joseph ◽  
Vijaya Durga Chintala ◽  
Gopi Krishna Saramekala ◽  
D. Srikar ◽  
...  

2021 ◽  
Author(s):  
Subba Rao Suddapalli ◽  
Bheema Rao Nistala

Abstract In this paper, variability analysis of graded channel dual material (GCDM) double gate (DG) strained-silicon (s-Si) MOSFET with fixed charges is analyzed with the help of Sentaurus TCAD. By varying the different device parameters, the variability analysis of the proposed GCDM-DG s-Si MOSFET is performed with respect to variations in threshold voltage and drain current as the line edge roughness and fluctuations in random dopant, contact resistance, and oxide thickness are considered. The results confirm that the effect of process variations is severe when the device has fixed charges at oxide interface. Moreover, the proposed GCDM-DG s-Si p-MOSFET has less vulnerable to the effects of line edge roughness, fluctuations in oxide thickness and random dopants in comparison with the proposed GCDM-DG s-Si n-MOSFET.


2016 ◽  
Vol 97 ◽  
pp. 477-488 ◽  
Author(s):  
Gollamudi Sai Sivaram ◽  
Shramana Chakraborty ◽  
Rahul Das ◽  
Arpan Dasgupta ◽  
Atanu Kundu ◽  
...  

NANO ◽  
2016 ◽  
Vol 11 (10) ◽  
pp. 1650117 ◽  
Author(s):  
Arpan Dasgupta ◽  
Rahul Das ◽  
Shramana Chakraborty ◽  
Arka Dutta ◽  
Atanu Kundu ◽  
...  

The paper reports a comparative analysis between the dual material gate double gate (DMG-DG) nMOSFET and the tri material gate double gate (TMG-DG) nMOSFET in terms of their analog and RF performance. Three different devices having the DMG-DG structure have been considered. Each of the devices have different higher workfunction material gate length (L1) to lower workfunction material gate length (L2) ratio (L1:L2). Along with the three devices, the performance of the TMG-DG nMOSFET is compared. The analog parameters considered for the comparison are the drain current ([Formula: see text]), the transconductance ([Formula: see text]), the transconductance generation factor ([Formula: see text]/[Formula: see text]) and the intrinsic gain ([Formula: see text]Ro). The drain induced barrier lowering (DIBL) of the devices is compared. The RF analysis is performed using the non quasi static (NQS) approach. We consider the intrinsic gate to source capacitances ([Formula: see text]), the intrinsic gate to drain capacitance ([Formula: see text]), the intrinsic gate to source resistances ([Formula: see text]), the intrinsic gate to drain resistance ([Formula: see text]), the transport delay ([Formula: see text]), the unity current gain cut-off frequency ([Formula: see text]) and the max frequency of oscillation ([Formula: see text]) for the RF comparisons. A single stage amplifier is also implemented using the devices for a circuit comparison.


Sign in / Sign up

Export Citation Format

Share Document