scholarly journals Metabolic And Biochemical Changes Associated With Root Growth Restriction Under Cd Stress During Maize Pre-Emergence

Author(s):  
Carolina L. Matayoshi ◽  
Liliana B. Pena ◽  
Vicent Arbona ◽  
Aurelio Gómez-Cadenas ◽  
Susana M. Gallego

Abstract Cadmium (Cd) pollution of agricultural soils is a growing global problem. Plant growth restriction is the main visible symptom of Cd toxicity, and this metal may be particularly harmful to the preformed, seminal root during the pre-emergence stage. In the present study, we focused on Cd phytotoxicity on seminal root growth, nutrient composition, redox status, and hormone homeostasis during the pre-emergence stage, distinguishing between the root apex and the remaining root tissue. After 72 h of metal exposure (50 and 100 µM CdCl2), root length and biomass was diminished, as well as Ca, Fe, Mg, and Mn contents. A redox imbalance was evidenced by changes in peroxidase activities and decreased ascorbate-dehydroascorbate ratio in both root parts. There was less accumulation of carbonylated proteins in both root fractions upon exposition to 50 µM Cd, compared to 100 µM Cd, and this was related to increased 20S proteasome activities. Cd incremented ABA, IAA, and SA contents, but drastically reduced the biologically active gibberellin GA4 and the conjugate jasmonoyl isoleucine (JA-Ile). We demonstrated that the whole root tissue is involved in maize response to Cd stress, which entails redox and hormonal rearrangements, probably directed to widen plant defense lines at the expense of root growth.

Weed Science ◽  
1981 ◽  
Vol 29 (6) ◽  
pp. 697-703 ◽  
Author(s):  
Michael Barrett ◽  
Floyd M. Ashton

Napropamide [2-(α-napthoxy)-N,N-diethylpropionamide] inhibited root and shoot growth in corn (Zea maysL. ‘NC+ 59’) and tomato (Lycopersicon esculentumMill. ‘Niagara VF315’) seedlings. Shoot growth was reduced less than root growth in both species. Corn roots were approximately 10 times more sensitive to napropamide than were tomato roots. Translocation of napropamide from the roots to the shoot of tomato occurred within 0.5 h and followed an apoplastic pattern. Little movement of napropamide from the roots to the shoots occurred in corn. Metabolism of napropamide was not evident in either species during an 8-h exposure. Absorption studies showed that total napropamide levels were 60% higher in corn root tissue than in tomato root tissue. The greater napropamide content in the corn roots was associated with a tightly bound fraction of the total napropamide influx.


Weed Science ◽  
1975 ◽  
Vol 23 (5) ◽  
pp. 364-368 ◽  
Author(s):  
P. L. Orwick ◽  
M. M. Schreiber

We studied the early root growth of fourSetariataxa: giant foxtail (Setaria faberiHerrm.), giant green foxtail [Setaria viridisvar.major(Gaud.) Posp.], robust white foxtail (Setaria viridisvar.robusta-albaSchreiber), robust purple foxtail (Setaria viridisvar.robusta-purpureaSchreiber). Growth studies in controlled environments showed significant differences in root elongation among the taxa at three photoperiods. Seminal root lengths after 4 days followed the order presented for selectivity and metabolism of atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] and propazine [2-chloro-4,6-bis(isopropylamino)-s-triazine] (robust white foxtail > giant green foxtail = robust purple foxtail > giant foxtail). Giant foxtail had the greatest root diameter, resulting in the greatest surface area and volume when lengths were equated. The order of seminal root lengths or diameters changed little after 7 days. Robust white foxtail had the most and longest first order lateral roots. Diameter of first order laterals showed giant foxtail > giant green foxtail = robust purple foxtail > robust white foxtail.


1972 ◽  
Vol 25 (4) ◽  
pp. 669 ◽  
Author(s):  
C Hackett ◽  
DA Rose

Previous papers have reported that relations between the total number, length, surface area, and volume of graminaceous root members tend to remain roughly constant during vegetative growth. Through the use of a model of the extension and branching of a seminal root of barley (Hordeum vulgare L.), which was developed for the purpose, an attempt has now been made to determine the properties of root growth responsible for the phenomenon.


1992 ◽  
Vol 19 (4) ◽  
pp. 427 ◽  
Author(s):  
TI Baskin ◽  
AS Betzner ◽  
R Hoggart ◽  
A Cork ◽  
RE Williamson

We have begun a mutational analysis of root morphogenesis in Arabidopsis thaliana. We report here the initial genetic and physiological characterisation of six mutations that affect root growth and development. Three of them (rsw1, rsw2, rsw3) cause extensive radial swelling of the root apex. These mutations are recessive at different loci and show temperature-sensitive expression, such that the roots appear wild type when grown at 18�C but express the mutant phenotype when transferred to 31�C. Following transfer to the restrictive temperature, these three mutations have different kinetic and morphological patterns of radial swelling, and grow at different rates with continued time at high temperature. We believe that these mutations represent three different loci active in the wild type in regulating the shape of the root. We have also characterised two mutations that affect only the root epidermis, causing many epidermal cells to bulge (reb1-1, reb1-2). The two mutations are recessive and are alleles. However, rebl-1 is constitutive whereas reb1-2 is temperature sensitive, only expressing at 33�C. Reb1-2 also causes a deviation from the normal straight growth of the root such that the affected roots grow with sharp bends or meanders. The final mutant reported here is a stunted plant (stp1), in which the root growth rate is approximately 25% of the wild type rate. Moreover, root growth steadily accelerates over 5 days following germination in the wild type but remains constant in stp1, which grows at a constant rate over the same interval.


2013 ◽  
Vol 40 (5) ◽  
pp. 516 ◽  
Author(s):  
Megan C. Shelden ◽  
Ute Roessner ◽  
Robert E. Sharp ◽  
Mark Tester ◽  
Antony Bacic

We aimed to identify genetic variation in root growth in the cereal crop barley (Hordeum vulgare L.) in response to the early phase of salinity stress. Seminal root elongation was examined at various concentrations of salinity in seedlings of eight barley genotypes consisting of a landrace, wild barley and cultivars. Salinity inhibited seminal root elongation in all genotypes, with considerable variation observed between genotypes. Relative root elongation rates were 60–90% and 30–70% of the control rates at 100 and 150 mM NaCl, respectively. The screen identified the wild barley genotype CPI71284–48 as the most tolerant, maintaining root elongation and biomass in response to salinity. Root elongation was most significantly inhibited in the landrace Sahara. Root and shoot Na+ concentrations increased and K+ concentrations decreased in all genotypes in response to salinity. However, the root and shoot ion concentrations did not correlate with root elongation rates, suggesting that the Na+ and K+ concentrations were not directly influencing root growth, at least during the early phase of salt stress. The identification of genetic diversity in root growth responses to salt stress in barley provides important information for future genetic, physiological and biochemical characterisation of mechanisms of salinity tolerance.


2021 ◽  
Author(s):  
Kaiwen Bai ◽  
Luyi Jiang ◽  
Qiming Li ◽  
Jingfei Zhang ◽  
Lili Zhang ◽  
...  

Abstract Background Few studies are available on the mechanism of intestinal dysfunction in newborn piglets with intrauterine growth restriction (IUGR). This work aimed to study the mechanism of jejunum dysfunction in IUGR newborn piglets through RNA-seq and improve their performance by dimethylglycine sodium salt (DMG-Na) supplementation after weaning. Methods In total, 13 normal birth weight (NBW) newborn piglets and 23 IUGR newborn piglets were obtained. Among them, 3 NBW and 3 IUGR newborn piglets were selected and stunned by electric shock after birth without suckling and collected the jejunum samples for RNA-sEq. After weaning at 21 days, they were randomly assigned to 3 groups (n = 10): NBW weaned piglets fed with common basal diets (N); IUGR weaned piglets fed with common basal diets (I); IUGR weaned piglets fed with common basal diets plus 0.1% DMG-Na (ID). All piglets are slaughtered at 49 days of age to collect serum and jejunum samples. Results The hub genes, including ATP8, C11orf86, CDKN1C, DDX58. HPX, INHBB, LECT2, ND1, NFIX, PRDM5, PSD3, SCD, and ZNF770, were found from the data analyzed by RNA-seq and WGCNA. Interestingly, we found ATP8 was the most significantly changed gene, which was crucial in maintaining mitochondrial function. After weaning, the growth performance of ID group was improved (P < 0.05) compared to that in I group. Jejunum histological morphology and its sub-organelle ultrastructure, serum immunoglobulin, jejunum sIgA level, and jejunum digestive enzyme activity were improved (P < 0.05) in ID group compared to those in I group. The redox status of serum, jejunum and its mitochondrial, as well as jejunum redox status-related and mitochondrial function-related gene expression level and protein content were improved (P < 0.05) in ID group in comparison to those in I group. Conclusion The activity of the SIRT1/PGC1α pathway was inhibited in the IUGR weaned piglets, which in turn leads to damage to their redox status and jejunum structure and function, and finally lowers their performance. The IUGR weaned piglets activate the SIRT1/PGC1α pathway by taking in the antioxidant substance like DMG-Na, thereby improving their unfavorable body state.


Sign in / Sign up

Export Citation Format

Share Document