Genetic variation in the root growth response of barley genotypes to salinity stress

2013 ◽  
Vol 40 (5) ◽  
pp. 516 ◽  
Author(s):  
Megan C. Shelden ◽  
Ute Roessner ◽  
Robert E. Sharp ◽  
Mark Tester ◽  
Antony Bacic

We aimed to identify genetic variation in root growth in the cereal crop barley (Hordeum vulgare L.) in response to the early phase of salinity stress. Seminal root elongation was examined at various concentrations of salinity in seedlings of eight barley genotypes consisting of a landrace, wild barley and cultivars. Salinity inhibited seminal root elongation in all genotypes, with considerable variation observed between genotypes. Relative root elongation rates were 60–90% and 30–70% of the control rates at 100 and 150 mM NaCl, respectively. The screen identified the wild barley genotype CPI71284–48 as the most tolerant, maintaining root elongation and biomass in response to salinity. Root elongation was most significantly inhibited in the landrace Sahara. Root and shoot Na+ concentrations increased and K+ concentrations decreased in all genotypes in response to salinity. However, the root and shoot ion concentrations did not correlate with root elongation rates, suggesting that the Na+ and K+ concentrations were not directly influencing root growth, at least during the early phase of salt stress. The identification of genetic diversity in root growth responses to salt stress in barley provides important information for future genetic, physiological and biochemical characterisation of mechanisms of salinity tolerance.

2004 ◽  
Vol 129 (2) ◽  
pp. 188-192 ◽  
Author(s):  
N. Bernstein ◽  
A. Meiri ◽  
M. Zilberstaine

In most crop species, growth of the shoot is more sensitive to salt stress than root growth. Avocado [Persea americana Mill.] is very sensitive to NaCl stress. Even low concentrations of salt (15 mm) inhibit tree growth and decrease productivity. Observations in experimental orchards have suggested that root growth in avocado might be more restricted by salinity than shoot growth. In the present study, we evaluated quantitatively the inhibitory effects of salt stress on growth of the avocado root in comparison to the shoot. Seedling plants of the West-Indian rootstock `Degania 117' were grown in complete nutrient solution containing 1, 5, 15, or 25 mm NaCl. The threshold NaCl concentration causing root and shoot growth reduction occurred between 5 and 15 mm. At all concentrations, root growth was much more sensitive to salinity than shoot growth. A concentration of 15 mm NaCl, which did not affect the rate of leaf emergence on the plant and decreased leaf biomass production only 10%, induced a 43% reduction in the rate of root elongation and decreased root volumetric growth rate by 33%. Under 25 mm NaCl, leaf biomass production, leaf initiation rate and leaf elongation rate were reduced 19.5%, 12%, and 5%, respectively, while root volumetric growth and root elongation rate were reduced 65% and 75%, respectively. This strong root growth inhibition is expected to influence the whole plant and therefore root growth under salinity should be considered as an important criterion for rootstocks' tolerance to NaCl.


2019 ◽  
Vol 20 (3) ◽  
pp. 791
Author(s):  
Mian Zhang ◽  
Man-Man Fu ◽  
Cheng-Wei Qiu ◽  
Fangbin Cao ◽  
Zhong-Hua Chen ◽  
...  

Tibetan wild barley has been identified to show large genetic variation and stress tolerance. A genome-wide association (GWA) analysis was performed to detect quantitative trait loci (QTLs) for drought tolerance using 777 Diversity Array Technology (DArT) markers and morphological and physiological traits of 166 Tibetan wild barley accessions in both hydroponic and pot experiments. Large genotypic variation for these traits was found; and population structure and kinship analysis identified three subpopulations among these barley genotypes. The average LD (linkage disequilibrium) decay distance was 5.16 cM, with the minimum on 6H (0.03 cM) and the maximum on 4H (23.48 cM). A total of 91 DArT markers were identified to be associated with drought tolerance-related traits, with 33, 26, 16, 1, 3, and 12 associations for morphological traits, H+K+-ATPase activity, antioxidant enzyme activities, malondialdehyde (MDA) content, soluble protein content, and potassium concentration, respectively. Furthermore, 7 and 24 putative candidate genes were identified based on the reference Meta-QTL map and by searching the Barleymap. The present study implicated that Tibetan annual wild barley from Qinghai–Tibet Plateau is rich in genetic variation for drought stress. The QTLs detected by genome-wide association analysis could be used in marker-assisting breeding for drought-tolerant barley genotypes and provide useful information for discovery and functional analysis of key genes in the future.


2014 ◽  
Vol 94 (4) ◽  
pp. 733-740 ◽  
Author(s):  
Ping An ◽  
Xiangjun Li ◽  
Yuanrun Zheng ◽  
A. Egrinya Eneji ◽  
Shinobu Inanaga

An, P., Li, X., Zheng, Y., Eneji, A. E. and Inanaga, S. 2014. Calcium effects on root cell wall composition and ion contents in two soybean cultivars under salinity stress. Can. J. Plant Sci. 94: 733–740. It has been widely suggested that calcium (Ca) application ameliorates salt stress, but characteristic changes in root cell wall due to Ca application under saline conditions are poorly documented. Our objectives were: (1) to determine the effect of Ca on root cell wall composition, using two soybean cultivars differing in sensitivity to salt stress and (2) to understand the relationship between the internal effects of sodium–calcium interaction on the root cell wall. Uniform seedlings were transplanted into mixed solutions of NaCl (0, 40 mM,) and CaCl2 (0, 0.5, 2 mM). Root lengths were measured after an exposure of 14, 24 and 40 h to the treatments and cell wall analysis performed for total sugars, uronic acid and ion contents. Without salinity stress, Ca application caused no significant changes in root growth and cell wall constituents in both cultivars. However, it did ameliorate the decrease in the amount of cell wall under stress, especially the pectin fraction. Both cell wall and cellular Ca2+ and K+ contents were significantly increased by additional Ca2+ under saline condition. Therefore, by applying Ca2+, the maintenance of pectin level and increase in cell wall Ca2+ may contribute to the restoration of root growth under salinity. Calcium application significantly increased the pectin level under salinity and soybean root growth also showed notable restoration. One way Ca ameliorates salt toxicity may be by maintaining the composition of the cell wall. This ameliorative effect was more conspicuous in the salt-tolerant cultivar, Dare, than the salt-sensitive cultivar, Touzan 69.


Agronomy ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 127 ◽  
Author(s):  
Muhammad Zeeshan ◽  
Meiqin Lu ◽  
Shafaque Sehar ◽  
Paul Holford ◽  
Feibo Wu

A greenhouse hydroponic experiment was performed using salt-tolerant (cv. Suntop) and -sensitive (Sunmate) wheat cultivars and a salt-tolerant barley cv. CM72 to evaluate how cultivar and species differ in response to salinity stress. Results showed that wheat cv. Suntop performed high tolerance to salinity, being similar tolerance to salinity with CM72, compared with cv. Sunmate. Similar to CM72, Suntop recorded less salinity induced increase in malondialdehyde (MDA) accumulation and less reduction in plant height, net photosynthetic rate (Pn), chlorophyll content, and biomass than in sensitive wheat cv. Sunmate. Significant time-course and cultivar-dependent changes were observed in the activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) in roots and leaves after salinity treatment. Higher activities were found in CM72 and Suntop compared to Sunmate. Furthermore, a clear modification was observed in leaf and root ultrastructure after NaCl treatment with more obvious changes in the sensitive wheat cv. Sunmate, rather than in CM72 and Suntop. Although differences were observed between CM72 and Suntop in the growth and biochemical traits assessed and modified by salt stress, the differences were negligible in comparison with the general response to the salt stress of sensitive wheat cv. Sunmate. In addition, salinity stress induced an increase in the Na+ and Na+/K+ ratio but a reduction in K+ concentrations, most prominently in Sunmate and followed by Suntop and CM72.


2020 ◽  
Author(s):  
Yang Shao ◽  
Xiaohui Feng ◽  
Hiroki Nakahara ◽  
Muhammad Irshad ◽  
A. Egrinya Eneji ◽  
...  

AbstractPlant salt tolerance is closely associated with a high rate of root growth. Although root growth is governed by cell-wall and apoplastic pH, the relationship between these factors in the root elongation zone under salinity stress remains unclear. Here, we assess apoplastic pH, pH- and expansin-dependent cell-wall extensibility, and expansin expression in the root elongation zone of salt-sensitive (Yongliang-15) and -tolerant (JS-7) cultivars under salinity stress. A six-day 80 mM NaCl treatment significantly reduced apical-root apoplastic pH, from 6.2 to 5.3, in both cultivars. Using a pH-dependent cell-wall extensibility experiment, we found that, under 0 mM NaCl treatment, the optimal pH for cell-wall loosening was 6.0 in the salinity-tolerant cultivar and 4.6 in the salinity-sensitive cultivar. Under 80 mM treatment, a pH of 5.0 mitigated the cell-wall stiffness caused by salinity stress in the salinity-tolerant cultivar, but promoted cell-wall stiffening in the salinity-sensitive cultivar. These changes in pH-dependent cell-wall extensibility are consistent with differences in the root growth of two cultivars under salinity stress. Exogenous expansin application, and expansin expression experiments, we found that salinity stress altered expansin expression, differentially affecting cell-wall extensibility under pH 5.0 and 6.0. TaEXPA7 and TaEXPA8 induced cell-wall loosening at pH 5.0, whereas TaEXPA5 induced cell-wall loosening at pH 6.0. These results elucidate the relationship between expansin and cell-wall extensibility in the root elongation zone, with important implications for enhancing plant growth under salinity stress.


2012 ◽  
Vol 550-553 ◽  
pp. 1464-1467
Author(s):  
Xiu Ping Li ◽  
Yan Lai Zhang ◽  
Sasakawa Hideo

The effective dissolution method of 4,4,4-trifluoro-3-(indole-3-)butyric acid (TFIBA) to rice plant growth was examined. Elongation of rice seminal root was promoted approximately 80% by continuous supply of 10-5 mol L-1 TFIBA dissolved in water. The primitive effect of TFIBA dissolved in DMSO on root elongation was greater than that of TFIBA dissolved in water, and the length of root was significantly increased by 233% by treatment with TFIBA at 10-5 mol L-1, compared with that in untreated control seedlings. However, DMSO occurred increase of root weight and showed somewhat disadvantage about reproducibility of TFIBA effect. In contrast, the reproducibility of TFIBA effect was high in the solution prepared with water.


Author(s):  
K.H. Widdup ◽  
T.L. Knight ◽  
C.J. Waters

Slow establishment of caucasian clover (Trifolium ambiguum L.) is hindering the use of this legume in pasture mixtures. Improved genetic material is one strategy of correcting the problem. Newly harvested seed of hexaploid caucasian clover germplasm covering a range of origins, together with white and red clover and lucerne, were sown in 1 m rows in a Wakanui soil at Lincoln in November 1995. After 21 days, the caucasian clover material as a group had similar numbers of emerged seedlings as white clover and lucerne, but was inferior to red clover. There was wide variation among caucasian clover lines (48-70% seedling emergence), with the cool-season selection from cv. Monaro ranked the highest. Recurrent selection at low temperatures could be used to select material with improved rates of seedling emergence. Red clover and lucerne seedlings produced significantly greater shoot and root dry weight than caucasian and white clover seedlings. Initially, caucasian clover seedlings partitioned 1:1 shoot to root dry weight compared with 3:1 for white clover. After 2 months, caucasian clover seedlings had similar shoot growth but 3 times the root growth of white clover. Between 2 and 5 months, caucasian clover partitioned more to root and rhizome growth, resulting in a 0.3:1 shoot:root ratio compared with 2:1 for white clover. Both clover species had similar total dry weight after 5 months. Unhindered root/ rhizome devel-opment is very important to hasten the establishment phase of caucasian clover. The caucasian clover lines KZ3 and cool-season, both selections from Monaro, developed seedlings with greater shoot and root growth than cv. Monaro. KZ3 continued to produce greater root growth after 5 months, indicating the genetic potential for improvement in seedling growth rate. Different pasture estab-lishment techniques are proposed that take account of the seedling growth characteristics of caucasian clover. Keywords: establishment, genetic variation, growth, seedling emergence, Trifolium ambiguum


2019 ◽  
Vol 45 (1) ◽  
pp. 100
Author(s):  
Qing-Qing YAN ◽  
Ju-Song ZHANG ◽  
Xing-Xing LI ◽  
Yan-Ti WANG

Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 641
Author(s):  
Hyemin Lim ◽  
Hyunju Hwang ◽  
Taelim Kim ◽  
Soyoung Kim ◽  
Hoyong Chung ◽  
...  

In plants, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a main enzyme in the glycolytic pathway. It plays an essential role in glycerolipid metabolism and response to various stresses. To examine the function of PsGAPDH (Pleurotus sajor-caju GAPDH) in response to abiotic stress, we generated transgenic rice plants with single-copy/intergenic/homozygous overexpression PsGAPDH (PsGAPDH-OX) and investigated their responses to salinity stress. Seedling growth and germination rates of PsGAPDH-OX were significantly increased under salt stress conditions compared to those of the wild type. To elucidate the role of PsGAPDH-OX in salt stress tolerance of rice, an Illumina HiSeq 2000 platform was used to analyze transcriptome profiles of leaves under salt stress. Analysis results of sequencing data showed that 1124 transcripts were differentially expressed. Using the list of differentially expressed genes (DEGs), functional enrichment analyses of DEGs such as Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were performed. KEGG pathway enrichment analysis revealed that unigenes exhibiting differential expression were involved in starch and sucrose metabolism. Interestingly, trehalose-6-phosphate synthase (TPS) genes, of which expression was enhanced by abiotic stress, showed a significant difference in PsGAPDH-OX. Findings of this study suggest that PsGAPDH plays a role in the adaptation of rice plants to salt stress.


Sign in / Sign up

Export Citation Format

Share Document