scholarly journals Genetic predisposition to television watching increases the risk of type 2 diabetes: a bidirectional and multivariable Mendelian randomization study

2020 ◽  
Author(s):  
Songzan Chen ◽  
Fangkun Yang ◽  
Tian Xu ◽  
Yao Wang ◽  
Kaijie Zhang ◽  
...  

Abstract Background: Excessive sedentary behaviors have been reported to be associated with increased risk of type 2 diabetes, but whether this association is causal remains unclear. In current study, we aimed to investigate the causal association between domain-specific sedentary behaviors and the risk of type 2 diabetes using a two-sample Mendelian randomization (MR) study. Methods: We identified 165 single nucleotide polymorphisms as instrumental variables for television watching, 43 for computer use and 5 for driving behavior from a recently published genome-wide association study (n = 408,815). Genetic association estimates for type 2 diabetes were obtained from the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) consortium (74,124 cases and 824,006 controls). The inverse variance-weighted method was used to estimate the effect of genetically predicted sedentary behaviors on the risk of type 2 diabetes. Reverse MR analysis was performed to investigate the reverse causation. The weighted median method, MR-Egger method, and MR Pleiotropy Residual Sum and Outlier method were employed in the sensitivity analyses. In addition, multivariable MR analysis and mediation analysis were conducted to explore the potential mechanistic elements.Results: Genetic predisposition to excessive television watching was associated with increased risk of type 2 diabetes. The OR (95% CI) per 1.5h (1 standard deviation) increment in television watching time was 1.82 (1.61, 2.07) for type 2 diabetes. This association was substantially attenuated after adjustment for anthropometric traits (adjusting BMI: OR = 1.35, 95% CI = 1.17 – 1.57, P = 4.1 × 10-5; adjusting WHR: OR = 1.26, 95% CI = 1.09 – 1.45, P = 1.4 × 10-3) and educational attainment (OR = 1.49, 95% CI = 1.16 – 1.91, P = 1.7 × 10-3). There was limited evidence of associations of computer use and driving behavior with the risk of type 2 diabetes. Conclusions: Our study clarifies the causal effect of excessive television watching on the increased risk of type 2 diabetes from a genetic perspective, which may be partly mediated via anthropometric and educational traits. Television watching may serve as a behavioral target to prevent incident diabetes.

BMC Medicine ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Shiu Lun Au Yeung ◽  
Jie V Zhao ◽  
C Mary Schooling

Abstract Background Observational studies suggest poorer glycemic traits and type 2 diabetes associated with coronavirus disease 2019 (COVID-19) risk although these findings could be confounded by socioeconomic position. We conducted a two-sample Mendelian randomization to clarify their role in COVID-19 risk and specific COVID-19 phenotypes (hospitalized and severe cases). Method We identified genetic instruments for fasting glucose (n = 133,010), 2 h glucose (n = 42,854), glycated hemoglobin (n = 123,665), and type 2 diabetes (74,124 cases and 824,006 controls) from genome wide association studies and applied them to COVID-19 Host Genetics Initiative summary statistics (17,965 COVID-19 cases and 1,370,547 population controls). We used inverse variance weighting to obtain the causal estimates of glycemic traits and genetic predisposition to type 2 diabetes in COVID-19 risk. Sensitivity analyses included MR-Egger and weighted median method. Results We found genetic predisposition to type 2 diabetes was not associated with any COVID-19 phenotype (OR: 1.00 per unit increase in log odds of having diabetes, 95%CI 0.97 to 1.04 for overall COVID-19; OR: 1.02, 95%CI 0.95 to 1.09 for hospitalized COVID-19; and OR: 1.00, 95%CI 0.93 to 1.08 for severe COVID-19). There were no strong evidence for an association of glycemic traits in COVID-19 phenotypes, apart from a potential inverse association for fasting glucose albeit with wide confidence interval. Conclusion We provide some genetic evidence that poorer glycemic traits and predisposition to type 2 diabetes unlikely increase the risk of COVID-19. Although our study did not indicate glycemic traits increase severity of COVID-19, additional studies are needed to verify our findings.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zhiyong Cui ◽  
Hui Feng ◽  
Baichuan He ◽  
Yong Xing ◽  
Zhaorui Liu ◽  
...  

BackgroundIt remains unclear whether an increased risk of type 2 diabetes (T2D) affects the risk of osteoarthritis (OA).MethodsHere, we used two-sample Mendelian randomization (MR) to obtain non-confounded estimates of the effect of T2D and glycemic traits on hip and knee OA. We identified single-nucleotide polymorphisms (SNPs) strongly associated with T2D, fasting glucose (FG), and 2-h postprandial glucose (2hGlu) from genome-wide association studies (GWAS). We used the MR inverse variance weighted (IVW), the MR–Egger method, the weighted median (WM), and the Robust Adjusted Profile Score (MR.RAPS) to reveal the associations of T2D, FG, and 2hGlu with hip and knee OA risks. Sensitivity analyses were also conducted to verify whether heterogeneity and pleiotropy can bias the MR results.ResultsWe did not find statistically significant causal effects of genetically increased T2D risk, FG, and 2hGlu on hip and knee OA (e.g., T2D and hip OA, MR–Egger OR = 1.1708, 95% CI 0.9469–1.4476, p = 0.1547). It was confirmed that horizontal pleiotropy was unlikely to bias the causality (e.g., T2D and hip OA, MR–Egger, intercept = −0.0105, p = 0.1367). No evidence of heterogeneity was found between the genetic variants (e.g., T2D and hip OA, MR–Egger Q = 30.1362, I2 < 0.0001, p = 0.6104).ConclusionOur MR study did not support causal effects of a genetically increased T2D risk, FG, and 2hGlu on hip and knee OA risk.


2020 ◽  
Author(s):  
Zhiyong Cui ◽  
Hui Feng ◽  
Baichuan He ◽  
Yong Xing ◽  
Zhaorui Liu ◽  
...  

Abstract Background: It remains unclear whether an increased risk of type 2 diabetes (T2D) affects the risk of osteoarthritis (OA). Methods: Here, we used two-sample Mendelian randomization (MR) to obtain non-confounded estimates of the effect of T2D and glycemic traits on hip and knee OA. We identified single nucleotide polymorphisms (SNPs) strongly associated with T2D, fasting glucose (FG) and 2-hour postprandial glucose (2hGlu) from genome-wide association studies (GWAS) . We used MR inverse variance weighted (IVW), the MR-Egger method, the weighted median (WM) and Robust Adjusted Profile Score (MR.RAPS) to reveal the associations of T2D, FG and 2hGlu with hip and knee OA risk. Sensitivity analyses were also conducted to verify whether heterogeneity and pleiotropy can bias the MR results.Results: We did not find statistically significant causal effects of genetically increased T2D risk, FG and 2hGlu on hip and knee OA (e.g., T2D and hip OA, MR-Egger OR=0.9536, 95% CI 0.5585 to 1.6283, p=0.8629). It was confirmed that horizontal pleiotropy was unlikely to bias the causality (e.g., T2D and hip OA, MR-Egger, intercept=-0.0032, p=0.8518). No evidence of heterogeneity was found between the genetic variants (e.g., T2D and hip OA, MR-Egger Q=40.5481, I2=0.1368, p=0.2389). Conclusions: Our MR study did not support causal effects of a genetically increased T2D risk, FG and 2hGlu on hip and knee OA risk.


2021 ◽  
Author(s):  
Resham L Gurung ◽  
Rajkumar Dorajoo ◽  
Yiamunaa M ◽  
Ling Wang ◽  
Sylvia Liu ◽  
...  

Abstract Background Chronic kidney disease (CKD) is common among type 2 diabetes (T2D) and increases the risk of kidney failure and cardiovascular diseases. Shorter leukocyte telomere length is associated with CKD in patients with T2D. We previously reported single nucleotide polymorphisms (SNPs) associated with leukocyte telomere length in Asian population. In this study, we elucidated the association of these SNPs with CKD in patients with T2D using Mendelian randomization (MR) approach. Methods The cross-sectional association of 16 leukocyte telomere length SNPs with CKD, defined as an estimated glomerular filtration rate of less than 60 ml/min/1.73m2 was assessed among 4,768 (1,628 cases, 3,140 controls) participants in the Singapore Study of Macro-angiopathy and Micro-vascular Reactivity in Type 2 Diabetes and Diabetic Nephropathy cohorts. MR analysis was performed using the random-effect inverse-variance weighted (IVW) method, the weighted median, MR-Egger and Radial MR adjusted for age and sex-stratified by cohorts and ethnicity (Chinese and Malays), then meta-analysed. Results Genetically determined shorter leukocyte telomere length was associated with increased risk of CKD in patients with T2D (meta-IVW adjusted odds ratio = 1.51 [95% confidence interval, 1.12 - 2.12; P = 0.007; Phet= 0.547]). Similar results were obtained following sensitivity analysis. MR-Egger analysis (intercept) suggested no evidence of horizontal pleiotropy (β  =  0.010, P = 0.751). Conclusions Our findings suggest that genetically determined leukocyte telomere length is associated with CKD in patients with T2D. Further studies are warranted to elucidate the causal role of telomere length in CKD progression.


2021 ◽  
Vol 9 (1) ◽  
pp. e001948
Author(s):  
Marion Denos ◽  
Xiao-Mei Mai ◽  
Bjørn Olav Åsvold ◽  
Elin Pettersen Sørgjerd ◽  
Yue Chen ◽  
...  

IntroductionWe sought to investigate the relationship between serum 25-hydroxyvitamin D (25(OH)D) level and the risk of type 2 diabetes mellitus (T2DM) in adults who participated in the Trøndelag Health Study (HUNT), and the possible effect modification by family history and genetic predisposition.Research design and methodsThis prospective study included 3574 diabetes-free adults at baseline who participated in the HUNT2 (1995–1997) and HUNT3 (2006–2008) surveys. Serum 25(OH)D levels were determined at baseline and classified as <50 and ≥50 nmol/L. Family history of diabetes was defined as self-reported diabetes among parents and siblings. A Polygenic Risk Score (PRS) for T2DM based on 166 single-nucleotide polymorphisms was generated. Incident T2DM was defined by self-report and/or non-fasting glucose levels greater than 11 mmol/L and serum glutamic acid decarboxylase antibody level of <0.08 antibody index at the follow-up. Multivariable logistic regression models were applied to calculate adjusted ORs with 95% CIs. Effect modification by family history or PRS was assessed by likelihood ratio test (LRT).ResultsOver 11 years of follow-up, 92 (2.6%) participants developed T2DM. A higher risk of incident T2DM was observed in participants with serum 25(OH)D level of<50 nmol/L compared with those of ≥50 nmol/L (OR 1.72, 95% CI 1.03 to 2.86). Level of 25(OH)D<50 nmol/L was associated with an increased risk of T2DM in adults without family history of diabetes (OR 3.87, 95% CI 1.62 to 9.24) but not in those with a family history (OR 0.72, 95% CI 0.32 to 1.62, p value for LRT=0.003). There was no effect modification by PRS (p value for LRT>0.23).ConclusionSerum 25(OH)D<50 nmol/L was associated with an increased risk of T2DM in Norwegian adults. The inverse association was modified by family history of diabetes but not by genetic predisposition to T2DM.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Shuai Yuan ◽  
Edward L. Giovannucci ◽  
Susanna C. Larsson

AbstractWe conducted a Mendelian randomization study to determine the potential causal associations of gallstone disease, diabetes, serum calcium, triglyceride levels, smoking and alcohol consumption with acute and chronic pancreatitis. Genetic variants associated with the exposures at p < 5 × 10−8 were selected from corresponding genome-wide association studies. Summary-level data for pancreatitis were obtained from the FinnGen consortium and UK Biobank. Univariable and multivariable Mendelian randomization analyses were performed and results from FinnGen and UK Biobank were combined using the fixed-effects meta-analysis method. Genetic predisposition to gallstone disease, type 2 diabetes and smoking initiation was associated with an increased risk of acute pancreatitis. The combined odds ratios (ORs) were 1.74 (95% confidence interval (CI), 1.57, 1.93) for gallstone disease, 1.14 (95% CI, 1.06, 1.21) for type 2 diabetes and 1.56 (95% CI, 1.32, 1.83) for smoking initiation. The association for type 2 diabetes attenuated after adjustment for gallstone disease. Genetic predisposition to gallstone disease and smoking initiation as well as higher genetically predicted serum calcium and triglyceride levels were associated with an increased risk of chronic pancreatitis. The combined ORs of chronic pancreatitis were 1.27 (95% CI, 1.08, 1.50) for gallstone disease, 1.86 (95% CI, 1.43, 2.43) for smoking initiation, 2.20 (95% CI, 1.30, 3.72) for calcium and 1.47 (95% CI, 1.23, 1.76) for triglycerides. This study provides evidence in support that gallstone disease, type 2 diabetes, smoking and elevated calcium and triglyceride levels are causally associated with the risk of acute or chronic pancreatitis.


2020 ◽  
Vol 29 (19) ◽  
pp. 3327-3337
Author(s):  
Christopher S Thom ◽  
Zhuoran Ding ◽  
Michael G Levin ◽  
Scott M Damrauer ◽  
Kyung Min Lee ◽  
...  

Abstract Clinical observations have linked tobacco smoking with increased type 2 diabetes risk. Mendelian randomization analysis has recently suggested smoking may be a causal risk factor for type 2 diabetes. However, this association could be mediated by additional risk factors correlated with smoking behavior, which have not been investigated. We hypothesized that body mass index (BMI) could help to explain the association between smoking and diabetes risk. First, we confirmed that genetic determinants of smoking initiation increased risk for type 2 diabetes (OR 1.21, 95% CI: 1.15–1.27, P = 1 × 10−12) and coronary artery disease (CAD; OR 1.21, 95% CI: 1.16–1.26, P = 2 × 10−20). Additionally, 2-fold increased smoking risk was positively associated with increased BMI (~0.8 kg/m2, 95% CI: 0.54–0.98 kg/m2, P = 1.8 × 10−11). Multivariable Mendelian randomization analyses showed that BMI accounted for nearly all the risk smoking exerted on type 2 diabetes (OR 1.06, 95% CI: 1.01–1.11, P = 0.03). In contrast, the independent effect of smoking on increased CAD risk persisted (OR 1.12, 95% CI: 1.08–1.17, P = 3 × 10−8). Causal mediation analyses agreed with these estimates. Furthermore, analysis using individual-level data from the Million Veteran Program independently replicated the association of smoking behavior with CAD (OR 1.24, 95% CI: 1.12–1.37, P = 2 × 10−5), but not type 2 diabetes (OR 0.98, 95% CI: 0.89–1.08, P = 0.69), after controlling for BMI. Our findings support a model whereby genetic determinants of smoking increase type 2 diabetes risk indirectly through their relationship with obesity. Smokers should be advised to stop smoking to limit type 2 diabetes and CAD risk. Therapeutic efforts should consider pathophysiology relating smoking and obesity.


Diabetologia ◽  
2011 ◽  
Vol 54 (4) ◽  
pp. 776-782 ◽  
Author(s):  
S. Li ◽  
J. H. Zhao ◽  
J. Luan ◽  
C. Langenberg ◽  
R. N. Luben ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Haoxin Peng ◽  
Xiangrong Wu ◽  
Yaokai Wen ◽  
Yiyuan Ao ◽  
Yutian Li ◽  
...  

Background:Leisure sedentary behaviors (LSB) are widespread, and observational studies have provided emerging evidence that LSB play a role in the development of lung cancer (LC). However, the causal inference between LSB and LC remains unknown.Methods: We utilized univariable (UVMR) and multivariable two-sample Mendelian randomization (MVMR) analysis to disentangle the effects of LSB on the risk of LC. MR analysis was conducted with genetic variants from genome-wide association studies of LSB (408,815 persons from UK Biobank), containing 152 single-nucleotide polymorphisms (SNPs) for television (TV) watching, 37 SNPs for computer use, and four SNPs for driving, and LC from the International Lung Cancer Consortium (11,348 cases and 15,861 controls). Multiple sensitivity analyses were further performed to verify the causality.Results: UVMR demonstrated that genetically predisposed 1.5-h increase in LSB spent on watching TV increased the odds of LC by 90% [odds ratio (OR), 1.90; 95% confidence interval (CI), 1.44–2.50; p &lt; 0.001]. Similar trends were observed for squamous cell lung cancer (OR, 1.97; 95%CI, 1.31–2.94; p = 0.0010) and lung adenocarcinoma (OR, 1.64; 95%CI 1.12–2.39; p = 0.0110). The causal effects remained significant after adjusting for education (OR, 1.97; 95%CI, 1.44–2.68; p &lt; 0.001) and body mass index (OR, 1.86; 95%CI, 1.36–2.54; p &lt; 0.001) through MVMR approach. No association was found between prolonged LSB spent on computer use and driving and LC risk. Genetically predisposed prolonged LSB was additionally correlated with smoking (OR, 1.557; 95%CI, 1.287–1.884; p &lt; 0.001) and alcohol consumption (OR, 1.010; 95%CI, 1.004–1.016; p = 0.0016). Consistency of results across complementary sensitivity MR methods further strengthened the causality.Conclusion: Robust evidence was demonstrated for an independent, causal effect of LSB spent on watching TV in increasing the risk of LC. Further work is necessary to investigate the potential mechanisms.


Sign in / Sign up

Export Citation Format

Share Document