scholarly journals Phenotypic and Molecular Detection of IMP and SPM Metallo-Beta-Lactamases in Clinical Isolates of Carbapenem Resistant Pseudomonas aeruginosa

2020 ◽  
Author(s):  
Zahra Norouzi Bazgir ◽  
Mohammad Ahanjan ◽  
Hamid Reza Goli ◽  
Roya Ghasemian ◽  
Mohammad Bagher Hashemi-Soteh

Abstract Objectives: Metallo-beta-lactamases play a major role in the resistance of Pseudomonas aeruginosa to carbapenems. The aim of this study was the phenotypic and molecular detection of IMP and SPM carbapenemase genes in 100 carbapenem-resistant clinical isolates of P. aeruginosa. The isolates identified using standard microbiological tests, and their antibiotic susceptibility pattern determined by disk agar diffusion (Kirby Bauer) method. Phenotypic identification of Metallo-beta-lactamase-producing strains assessed by the combined disk test (CDT). Then, PCR was used to detect the presence of IMP and SPM genes.Results: The highest and lowest levels of antibiotic resistance were observed against gentamicin (40%) and piperacillin-tazobactam (13%), respectively. Besides, 40 isolates (40%) had the Multi-drug Resistant (MDR) phenotype, while 5 (12.5%) MDR isolates were resistant to all antibiotics tested. The results of the CDT showed that among 43 carbapenem non-susceptible clinical isolates of P. aeruginosa, 33 (76.74%) isolates were Metallo-beta-lactamase-producing strains. Also, the frequency of the IMP gene was determined to be 9%, while none of these isolates carried the SPM gene. Due to the high prevalence of carbapenem-resistant and MDR P. aeruginosa in this study, routine antibiotic susceptibility testing and phenotypic identification of carbapenemase production by this bacterium are necessary for proper selection of antibiotics.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Wei Wang ◽  
Xiaoya Wang

AbstractBackgroundPseudomonas aeruginosa is an opportunistic pathogen which is associated with nosocomial infections and causes various diseases including urinary tract infection, pneumonia, soft-tissue infection and sepsis. The emergence of P. aeruginosa-acquired metallo-β-lactamase (MBL) is most worrisome and poses a serious threat during treatment and infection control. The objective of this study was to identify antibiotic susceptibility, phenotypic detection of MBL production and to determine the prevalence of MBL genes in carbapenem-resistant P. aeruginosa isolated from different clinical samples.MethodsA total of 329 non-duplicate P. aeruginosa isolated from various clinical samples from two hospitals in China between September 2017 and March 2019 were included in this study. Phenotypic detection of MBL was performed by the combined detection method using imipenem and imipenem-ethylenediaminetetraacetic acid (EDTA) discs. MBL-encoding genes including blaVIM-1, blaVIM-2, blaIMP-1, blaIMP-2, blaSPM-1, blaSIM, blaNDM-1 and blaGIM were detected by polymerase chain reaction (PCR).ResultsOf the 329 P. aeruginosa, majority of the isolates were resistant to imipenem (77.5%) followed by meropenem (64.7%). Of the 270 P. aeruginosa isolates tested, 149 (55.2%) isolates were found to be positive for MBL detection. Of the different samples, 57.8% (n = 26) of P. aeruginosa isolated from blood were found to be positive for MBL production. Of the various MBL genes, blaIMP-1 (28.2%) was the most predominant gene detected followed by blaVIM-2 (18.8%), blaVIM-1 (16.1%), blaNDM-1 (9.4%), blaIMP-2 (6.7%), blaSIM (6.0%), blaSPM-1 (4.0%) and blaGIM (1.3%) genes.ConclusionsThe high resistance of P. aeruginosa toward imipenem and meropenem and the high prevalence of blaIMP-1 and blaVIM-2 set the alarm on the increasing, perhaps the increased, carbapenem resistance. In addition to routine antibiotic susceptibility testings, our results emphasize the importance of both the phenotypic and genotypic MBL detection methods in routine practice for early detection of carbapenem resistance and to prevent further dissemination of this resistant pathogen.


2020 ◽  
Vol 25 (3) ◽  
pp. 301-307
Author(s):  
M. Duygu Aksoy ◽  
H. Murat Tuğrul

Introduction: Carbapenem resistant Pseudomonas aeruginosa strains cause serious problems in treatment. A large number of identified metallo-beta-lactamase (MBL) enzymes produced by P. aeruginosa are one of the most important mechanisms in resistance to carbapenems. MBL genes are located on the chromosome or plasmid, and they can easily spread between different bacterial strains. The activities of these enzymes are zinc-dependent, and they are inhibited by ethylenediaminetetraacetic acid (EDTA). Therefore, this advantage is used in MBL identification tests. In this study, it was aimed to determine MBL among P. aeruginosa strains. Materials and Methods: MBL existence was investigated in 35 P. aeruginosa strains accepted to be mildly susceptible/resistant to any of the carbapenem group of antibiotics through phenotypic and genotypic methods. Phenotypic tests were performed as double disk synergy test (DDST), combined disk diffusion tests (CDDT) by using 0.1 M and 0.5 M EDTA, MBL E-test, and modified Hodge test (MHT). blaIMP, blaVIM, blaGIM, blaSIM, blaSPM genes and blaNDM gene were investigated by multiplex polimerase chain reaction (PCR) and PCR, respectively. Escherichia coli ATCC 25922 and P. aeruginosa ATCC 27853 standard bacteria were used in tests. VIM-1, VIM-2, IMP-13, SPM-1, NDM-1 type MBL-producing P. aeruginosa strains were used as positive controls. Results: Among the carbapenems resistant P. aeruginosa isolates, positivity of MBL was found as 54.2% by MBL E-test, 42.8% by DDST, 94.2% and 37.1% by CDDT method using 0.5 M and 0.1 M EDTA, respectively. Modified Hodge test and genotypic method did not detect MBL. Conclusion: In order to correctly evaluate the results of the phenotypic method, the investigation of resistance genes by molecular methods is also required. The most common metallo-beta-lactamase enzymes responsible for resistance to carbapenem in Pseudomonas were not observed. It was thought that different mechanisms might be responsible for the identified carbapenem resistance.


Author(s):  
Olga Lomovskaya ◽  
Debora Rubio-Aparicio ◽  
Kirk Nelson ◽  
Dongxu Sun ◽  
Ruslan Tsivkovski ◽  
...  

QPX7728 is an ultra-broad-spectrum beta-lactamase inhibitor with potent inhibition of key serine and metallo beta-lactamases. QPX7728 enhances the potency of multiple beta-lactams in beta-lactamase producing Enterobacterales and Acinetobacter spp. In this study we evaluated the in vitro activity of QPX7728 (8 μg/ml) combined with multiple beta-lactams against clinical isolates of Pseudomonas aeruginosa with varying beta-lactam resistance mechanisms. Seven-hundred-ninety clinical isolates were included in this study; 500 isolates, termed a “representative panel”, were selected to be representative the MIC distribution of meropenem (MEM), ceftazidime-avibactam (CAZ-AVI), and ceftolozane-tazobactam (TOL-TAZ) resistance for clinical isolates according to 2017 SENTRY surveillance data (representative panel). An additional 290 selected isolates (“challenge panel”), that were either non-susceptible to MEM or were resistant to TOL-TAZ or CAZ-AVI were also tested; 61 strains carried metallo beta-lactamases (MBLs), 211 strains were defective in the carbapenem porin OprD and 185 strains had the MexAB-OprM efflux pump overproduced based on a phenotypic test. Against the representative panel, susceptibility for all QPX7728/beta-lactam combinations was >90%. For the challenge panel, QPX-ceftolozane (TOL) was the most active combination (78.6% susceptible) followed by equipotent QPX-piperacillin (PIP) and QPX-cefepime (FEP), restoring susceptibility in 70.3% of strains (CLSI breakpoints for the beta-lactam compound alone). For MBL-negative strains, QPX-TOL and QPX-FEP restored the MIC values to susceptibility rates in ∼90% and ∼80% of strains, respectively, vs 68-70% for QPX-MEM and QPX-PIP and 63-65% for TOL-TAZ and CAZ-AVI. For MBL-positive strains, QPX-PIP restored the MIC to susceptibility values for ∼70% of strains vs 2-40% for other combinations. Increased efflux and impaired OprD had varying effect on QPX7728 combination depending on the partner beta-lactam tested. QPX7728 enhanced the potency of multiple beta-lactams against P. aeruginosa, with varying results according to the beta-lactamase production and other intrinsic resistance mechanisms.


2017 ◽  
Vol 5 (1) ◽  
pp. 61 ◽  
Author(s):  
Surya Narayan Mishra ◽  
Seba Ranjan Biswal ◽  
Basanta Kumar Behera ◽  
Dipti Pattnaik

Background: Pseudomonas aeruginosa is a clinically troublesome gram-negative pathogen that causes both opportunistic infections and nosocomial outbreaks. Metallo beta lactamase have recently emerged as a worrisome resistance mechanism. Carbapenems had been the drug of choice for the infections caused by most penicillin- or cephalosporin-resistant gram-negative bacteria due to its broad-spectrum activity and stability to hydrolysis by most beta-lactamases. This does not hold good anymore due to rapid uprise of MBL producing strains. The current research covered 163 hospitalized cases of neonatal septicaemia from which Pseudomonas aeruginosa is isolated in the Paediatric Department of KIMS, Bhubaneswar. The study aimed at detecting the prevalence of metallo-beta lactamases in clinical isolates of imipenem resistant Pseudomonas aeruginosa from neonatal septicemia cases and to establish the antibiogram of Imipenem-resistant P. aeruginosa these cases. Methods: Clinical samples obtained from suspected cases of neonatal septicemia were first cultured by conventional methods and then identification was done by VITEK-2 instrument. Metallo beta lactamase (MBL) production was done by combined disc synergy test (CDST) using imipenem and EDTA (CDST-IPM) and double disc synergy test (DDST) using IPM and EDTA (DDST-IPM). Results: Among 1510 processed clinical specimens from cases of neonatal septicaemia; 637 (42.18%) showed positive growth of various clinically significant pathogens. Out of them in 163 (25.58%) cases Pseudomonas spp. was isolated. Of these, a total of 95 (58.28%) Pseudomonas spp. was found resistant to imipenem. All imipenem-resistant Pseudomonas isolates were positive for MBL by CDST imipenem-EDTA (CDST-IPM) method, whereas 89 (93.68%) were positive by DDST-IPM method, respectively. Pseudomonas aeruginosa was mostly isolated from endotracheal tube aspirate (57.89%) followed by pus (56.41%). Out of the 95 cases of MBL-producing Pseudomonas; 46 (48.42%) isolates showed the maximum susceptibility to piperacillin-tazobactam combination. All MBL-producing Pseudomonas isolates were resistant to ceftriaxone.Conclusions: MBL-producing Pseudomonas is found to be highly prevalent in our hospital, which is one of the major causes of multidrug resistance and need regular surveillance and strict adherence to a robust antibiotic policy.


1997 ◽  
Vol 41 (10) ◽  
pp. 2265-2269 ◽  
Author(s):  
H Vahaboglu ◽  
R Oztürk ◽  
G Aygün ◽  
F Coşkunkan ◽  
A Yaman ◽  
...  

We studied the prevalence and molecular epidemiology of PER-1-type beta-lactamases among Acinetobacter, Klebsiella, and Pseudomonas aeruginosa strains isolated over a 3-month period in eight university hospitals from distinct regions of Turkey. A total of 72, 92, and 367 Acinetobacter, Klebsiella, and P. aeruginosa isolates were studied, respectively. The presence of blaPER was determined by the colony hybridization method and later confirmed by isoelectric focusing. We detected PER-1-type beta-lactamases in 46% (33/72) of Acinetobacter strains and in 11% (40/367) of P. aeruginosa strains but not in Klebsiella strains. PER-1-type enzyme producers were highly resistant to ceftazidime and gentamicin, intermediately resistant to amikacin, and susceptible or moderately susceptible to imipenem and meropenem. Among PER-1-type-beta-lactamase-positive isolates, five Acinetobacter isolates and six P. aeruginosa isolates from different hospitals were selected for ribosomal DNA fingerprinting with EcoRI and SalI. The EcoRI-digested DNAs were later hybridized with a digoxigenin-labelled PER-1 probe. The ribotypes and the lengths of blaPER-carrying fragments were identical in four Acinetobacter strains. A single isolate (Ac3) harbored a PER gene on a different fragment (approximately 4.2 kbp) than the others (approximately 3.4 kbp) and showed a clearly distinguishable ribotype. Ribotypes of P. aeruginosa strains obtained with EcoRI showed three patterns. Similarly, in Pseudomonas strains two different EcoRI fragments harbored blaPER (approximately 4.2 kbp in five isolates and 3.4 kbp in one isolate). PER-1-type beta-lactamases appear to be restricted to Turkey. However, their clonal diversity and high prevalence indicate a high spreading potential.


2021 ◽  
Vol 37 (7) ◽  
Author(s):  
Amjad Ali ◽  
Kafeel Ahmad ◽  
Shaista Rahat ◽  
Israr Ahmad

Objectives: Pseudomonas aeruginosa is an opportunistic pathogen with remarkable adaptation ability to thrive in diverse environmental conditions. This study aimed at phenotypic and molecular analysis of metallo beta lactamases (blaIMP, blaVIM, blaNDM-1 and blaSPM-1) and genetic diversity analysis among imipenem resistant clinical isolates of Pseudomonas aeruginosa. Methods: This study was conducted from May 2017 to June 2018. The study included 187 Pseudomonas aeruginosa isolates collected from different clinical specimens from Peshawar, Pakistan. The isolates were analyzed for resistance to imipenem. Combined disc test (CDT) was then performed for phenotypic detection of metallo beta lactamases among imipenem resistant isolates of Pseudomonas aeruginosa. Molecular detection of metallo beta lactamases genes i.e. blaIMP, blaVIM, blaNDM-1 and blaSPM-1 was analyzed through polymerase chain reaction. Genetic diversity was determined through RAPD-PCR. Results: MBL production was observed in 76% (n=19) isolates. The occurrence of MBL genes blaIMP, blaNDM-1 and blaVIM was 68% (n=17), 48% (n=12), and 4% (n=1) respectively. The blaSPM-1 gene was not detected. High genetic diversity was observed in current study. Out of 182 isolates 171 isolates showed different RAPD profiles (93.95% polymorphism); 160 were unique RAPD strains and based on similarity coefficient ≥ 80%, 22 isolates were clustered into 11 distinct clones. Conclusion: A high prevalence of blaIMP and blaNDM-1 among imipenem resistant isolates of Pseudomonas aeruginosa is alarming that calls for proper control and prevention strategies. RAPD technique was found to be a good genotyping technique when limited resources are available. doi: https://doi.org/10.12669/pjms.37.7.4303 How to cite this:Ali A, Ahmad K, Rahat S, Ahmad I. Genetic diversity and molecular analysis of metallo beta lactamases among imipenem resistant clinical isolates of Pseudomonas aeruginosa from Peshawar, Pakistan. Pak J Med Sci. 2021;37(7):---------.  doi: https://doi.org/10.12669/pjms.37.7.4303 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Sign in / Sign up

Export Citation Format

Share Document