scholarly journals Phenotypic and Molecular Detection of the Metallo-Beta-Lactamases in Carbapenem-Resistant Pseudomonas aeruginosa Isolates from Clinical Samples

2020 ◽  
Vol 13 (2) ◽  
Author(s):  
Elif Vural ◽  
Nuran Delialioğlu ◽  
Seda Tezcan Ulger ◽  
Gurol Emekdas ◽  
Mehmet Sami Serin
2020 ◽  
Author(s):  
Zahra Norouzi Bazgir ◽  
Mohammad Ahanjan ◽  
Hamid Reza Goli ◽  
Roya Ghasemian ◽  
Mohammad Bagher Hashemi-Soteh

Abstract Objectives: Metallo-beta-lactamases play a major role in the resistance of Pseudomonas aeruginosa to carbapenems. The aim of this study was the phenotypic and molecular detection of IMP and SPM carbapenemase genes in 100 carbapenem-resistant clinical isolates of P. aeruginosa. The isolates identified using standard microbiological tests, and their antibiotic susceptibility pattern determined by disk agar diffusion (Kirby Bauer) method. Phenotypic identification of Metallo-beta-lactamase-producing strains assessed by the combined disk test (CDT). Then, PCR was used to detect the presence of IMP and SPM genes.Results: The highest and lowest levels of antibiotic resistance were observed against gentamicin (40%) and piperacillin-tazobactam (13%), respectively. Besides, 40 isolates (40%) had the Multi-drug Resistant (MDR) phenotype, while 5 (12.5%) MDR isolates were resistant to all antibiotics tested. The results of the CDT showed that among 43 carbapenem non-susceptible clinical isolates of P. aeruginosa, 33 (76.74%) isolates were Metallo-beta-lactamase-producing strains. Also, the frequency of the IMP gene was determined to be 9%, while none of these isolates carried the SPM gene. Due to the high prevalence of carbapenem-resistant and MDR P. aeruginosa in this study, routine antibiotic susceptibility testing and phenotypic identification of carbapenemase production by this bacterium are necessary for proper selection of antibiotics.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Wei Wang ◽  
Xiaoya Wang

AbstractBackgroundPseudomonas aeruginosa is an opportunistic pathogen which is associated with nosocomial infections and causes various diseases including urinary tract infection, pneumonia, soft-tissue infection and sepsis. The emergence of P. aeruginosa-acquired metallo-β-lactamase (MBL) is most worrisome and poses a serious threat during treatment and infection control. The objective of this study was to identify antibiotic susceptibility, phenotypic detection of MBL production and to determine the prevalence of MBL genes in carbapenem-resistant P. aeruginosa isolated from different clinical samples.MethodsA total of 329 non-duplicate P. aeruginosa isolated from various clinical samples from two hospitals in China between September 2017 and March 2019 were included in this study. Phenotypic detection of MBL was performed by the combined detection method using imipenem and imipenem-ethylenediaminetetraacetic acid (EDTA) discs. MBL-encoding genes including blaVIM-1, blaVIM-2, blaIMP-1, blaIMP-2, blaSPM-1, blaSIM, blaNDM-1 and blaGIM were detected by polymerase chain reaction (PCR).ResultsOf the 329 P. aeruginosa, majority of the isolates were resistant to imipenem (77.5%) followed by meropenem (64.7%). Of the 270 P. aeruginosa isolates tested, 149 (55.2%) isolates were found to be positive for MBL detection. Of the different samples, 57.8% (n = 26) of P. aeruginosa isolated from blood were found to be positive for MBL production. Of the various MBL genes, blaIMP-1 (28.2%) was the most predominant gene detected followed by blaVIM-2 (18.8%), blaVIM-1 (16.1%), blaNDM-1 (9.4%), blaIMP-2 (6.7%), blaSIM (6.0%), blaSPM-1 (4.0%) and blaGIM (1.3%) genes.ConclusionsThe high resistance of P. aeruginosa toward imipenem and meropenem and the high prevalence of blaIMP-1 and blaVIM-2 set the alarm on the increasing, perhaps the increased, carbapenem resistance. In addition to routine antibiotic susceptibility testings, our results emphasize the importance of both the phenotypic and genotypic MBL detection methods in routine practice for early detection of carbapenem resistance and to prevent further dissemination of this resistant pathogen.


2020 ◽  
Vol 25 (3) ◽  
pp. 301-307
Author(s):  
M. Duygu Aksoy ◽  
H. Murat Tuğrul

Introduction: Carbapenem resistant Pseudomonas aeruginosa strains cause serious problems in treatment. A large number of identified metallo-beta-lactamase (MBL) enzymes produced by P. aeruginosa are one of the most important mechanisms in resistance to carbapenems. MBL genes are located on the chromosome or plasmid, and they can easily spread between different bacterial strains. The activities of these enzymes are zinc-dependent, and they are inhibited by ethylenediaminetetraacetic acid (EDTA). Therefore, this advantage is used in MBL identification tests. In this study, it was aimed to determine MBL among P. aeruginosa strains. Materials and Methods: MBL existence was investigated in 35 P. aeruginosa strains accepted to be mildly susceptible/resistant to any of the carbapenem group of antibiotics through phenotypic and genotypic methods. Phenotypic tests were performed as double disk synergy test (DDST), combined disk diffusion tests (CDDT) by using 0.1 M and 0.5 M EDTA, MBL E-test, and modified Hodge test (MHT). blaIMP, blaVIM, blaGIM, blaSIM, blaSPM genes and blaNDM gene were investigated by multiplex polimerase chain reaction (PCR) and PCR, respectively. Escherichia coli ATCC 25922 and P. aeruginosa ATCC 27853 standard bacteria were used in tests. VIM-1, VIM-2, IMP-13, SPM-1, NDM-1 type MBL-producing P. aeruginosa strains were used as positive controls. Results: Among the carbapenems resistant P. aeruginosa isolates, positivity of MBL was found as 54.2% by MBL E-test, 42.8% by DDST, 94.2% and 37.1% by CDDT method using 0.5 M and 0.1 M EDTA, respectively. Modified Hodge test and genotypic method did not detect MBL. Conclusion: In order to correctly evaluate the results of the phenotypic method, the investigation of resistance genes by molecular methods is also required. The most common metallo-beta-lactamase enzymes responsible for resistance to carbapenem in Pseudomonas were not observed. It was thought that different mechanisms might be responsible for the identified carbapenem resistance.


2020 ◽  
Vol 10 (3) ◽  
pp. 412-418
Author(s):  
Fei Xu ◽  
Cheng Chen ◽  
Xing Li ◽  
Bo Zhang

Pseudomonas aeruginosa (P. aeruginosa) is a common opportunistic and nosocomial bacterial pathogen. Various multi-resistance mechanisms present across numerous P. aeruginosa strains counteract conventional antimicrobial therapy, thereby becoming a great challenge. This study aimed to establish the application of immunomagnetic isolation and chemiluminescence to detect the presence of extended spectra of β-lactamases encoding genes: blaTEM and blaVEB; metallo-beta-lactamases encoding gene: blaVIM; aminoglycoside modifying enzymes encoding gene: aac(6)II, ant(3)I; and the specific gene for P. aeruginosa, gyrB. P. aeruginosa was specifically selected using the immunomagnetic nanoparticles (IMNPs) in the six parallel bacterial plates counting, proving that they are reliable. Then, the high efficiency of IMNPs@Probes in targeting the resistance genes of P. aeruginosa was demonstrated using the results of chemiluminescent intensities of blaTEM, blaVEB, blaVIM aac(6)II, ant(3)I, and gyrB (more than 10 times higher than that of the control). Sixty-eight in situ clinical samples were tested for the presence of these resistance genes, and one more blaTEM and three more blaVIM individuals were detected using this method compared to the traditional PCR. Thus, the application of our method in clinical screening is specific, accurate, and reliable, and it could be useful in the administration of appropriate treatment.


Burns ◽  
2014 ◽  
Vol 40 (8) ◽  
pp. 1556-1561 ◽  
Author(s):  
Davood Kalantar Neyestanaki ◽  
Akbar Mirsalehian ◽  
Fereshteh Rezagholizadeh ◽  
Fereshteh Jabalameli ◽  
Morovat Taherikalani ◽  
...  

2018 ◽  
Vol 11 (12) ◽  
pp. 935-943 ◽  
Author(s):  
Mona Shaaban ◽  
Ahmed Al-Qahtani ◽  
Mohammed Al-Ahdal ◽  
Rasha Barwa

Introduction: Emergence of carbapenem resistance in Pseudomonas aeruginosa increases the therapeutic dilemma. In this study, we investigated various mechanisms involved in the resistance of P. aeruginosa clinical isolates to carbapenems. Methodology: P. aeruginosa isolates were isolated from different clinical samples. The antimicrobial susceptibility was evaluated by disc diffusion method. Carbapenemases were detected among carbapenem resistant isolates. Expression level of mexB and oprD was determined by real-time PCR. Molecular relatedness among isolates was detected based on pulse-field gel electrophoresis (PFGE). Results: Ninety P. aeruginosa isolates were purified from clinical specimens. High levels of resistance to imipenem and meropenem were detected in 16 isolates. PCR analysis of carbapenemases indicated the prevalence of Verona integron-encoded metallo-beta-lactamase (VIM); four isolates produced only VIM enzymes (VIM-1 or VIM-2), while the remaining twelve co-produced both VIM-1 or VIM-2 and NDM enzymes. Additionally, real-time PCR analysis elucidated high expression levels of mexB in seven of the carbapenem resistant isolates and low expression of oprD in seven isolates. The identified carbapenem-resistant isolates were clustered into eleven PFGE profiles where clusters E1 and E2 involved isolates exhibiting multiple carbapenemase genes (blaNDM-1, blaVIM-1 and blaVIM-2). Conclusion: Various mechanisms underlying carbapenem resistance have been detected in our P. aeruginosa cohort of isolates. Emergence of P. aeruginosa as a reservoir of multiple carbapenemases is increasing over time limiting the treatment options to this serious infection. This increases the urgency for infection control practices to reduce the incidence of this infection.


Author(s):  
Rafael Cantón ◽  
◽  
Elena Loza ◽  
Ricardo M. Arcay ◽  
Emilia Cercenado ◽  
...  

Objective. To analyse the susceptibility to ceftolozane-tazobactam and comparators in Enterobacterales and Pseudomonas aeruginosa isolates recovered from intraabdominal (IAI), urinary (UTI), respiratory (RTI) and bloodstream infection (BSI) in the SMART (Study for Monitoring Antimicrobial Resistance Trends) study. Methods. The susceptibility of 5,351 isolates collected in 11 Spanish hospitals (2016-2018) were analysed (EUCAST-2020 criteria) by broth microdilution and were phenotypically studied for the presence of extended-spectrum beta-lactamases (ESBL). Ceftolozane-tazobactam and/or carbapenem resistant isolates were genetically characterized for ESBL and carbapenemases. Results. Escherichia coli was the most frequent pathogen (49.3% IAI, 54.9% UTI, 16.7% RTI and 50% BSI), followed by Klebsiella pneumoniae (11.9%, 19.1%, 13.1% and 15.4%, respectively). P. aeruginosa was isolated in 9.3%, 5.6%, 32% and 9%, respectively. The frequency of isolates with ESBLs (2016-2017) was: 30.5% K. pneumoniae, 8.6% E. coli, 2.3% Klebsiella oxytoca and 0.7% Proteus mirabilis. Ceftolozane-tazobactam was very active against non-ESBL-(99.3% susceptible) and ESBL-(95.2%) producing E. coli being less active against K. pneumoniae (98% and 43.1%, respectively) isolates. CTX-M-15 was the most prevalent ESBL in E. coli (27.5%) and K. pneumoniae (51.9%) frequently associated with OXA-48-like carbapenemase. Overall, 93% of P. aeruginosa isolates were susceptible to ceftolozane-tazobactam, preserving this activity (>75%) in isolates resistant to other beta-lactams except in those resistant to meropenen or ceftazidime-avibactam. GES-5, PER-1, VIM-1/2 were the most prevalent enzymes in isolates resistant to ceftolozane-tazobactam. Conclusions. Ceftolozane-tazobactam showed high activity rates against isolates recovered in the SMART study although it was affected in K. pneumoniae and P. aeruginosa isolates with ESBL and/or carbapenemases.


Author(s):  
Sarita Sinha ◽  
Amit Singh ◽  
Rajesh Kumar Verma ◽  
Dharmendra Prasad Singh ◽  
Sunita Kumari

Background: Pseudomonas aeruginosa is a leading cause of nosocomial infections due to MBLs production with limited therapeutic options, higher rate of colonization is encountered in hospitalized patient streated with broad spectrum antibiotics. This study was conducted with an aim to know the prevalence of Carbapenem resistant MBLs producing strains of Pseudomonas aeruginosa in hospitalized patients.Methods: A total of 14700 samples were obtained from various wards during Jan 2016 to June 2017, were screened for P. aeruginosa by conventional culture and biochemical tests. All confirmed P. aeruginosa isolates were further subjected to Modified Kirby- Bauer disc diffusion test as per CLSI guidelines. All IPM resistant isolates were screened for MBL production by DDST, CDST, MHT and E-test MBL.Results: Atotal of 1423were identified as P. aeruginosa. The isolation rate of P. aeruginosa at our hospital was 9.7%. Among these, 130(9.1%) isolates were IPM resistant. A total of 111 (85.4%) were MBL positive by CDST and E-test, 92 (70.5%) by DDST and 80 (61.5%) by MHT. The prevalence of MBL producing P. aeruginosa was 111/1423(7.8%) while among IPM resistant P. aeruginosa, its prevalence was 111/130 (85.4%).Conclusions: The study documents presence of nosocomial MBL producing P. aeruginosa strains in our Institute. E-test and CDST were superior to DDST and MHT for detection of MBLs.


Sign in / Sign up

Export Citation Format

Share Document