scholarly journals Synthesis, characterization of Co1-xNixAl2O4 Spinel system and catalytic role in the synthesis of dihydropyrimidinone

Author(s):  
Teotone Vaz ◽  
Pranav P. Naik ◽  
Janesline Fernandes ◽  
Lalitprabha Salgaonkar ◽  
Snehal S. Hasolkar

Abstract In the present investigation, Spinel systems with chemical composition Co1 − xNixAl2O4 (x = 0.0, 0.25, 0.5, and 0.75) have been successfully synthesized by the co-precipitation citrate precursor technique. The phase formation, crystal structure, and impurity check were confirmed by X-ray powdered diffraction (XRD) and Fourier transforms infrared (FTIR) spectroscopy technique. The particle size estimation was done using a transmission electron microscope (TEM). Investigation of magnetic behavior and parameters such as saturation magnetization (MS), coercivity (HR), and retentivity (MR) was done using a vibrating sample magnetometer (VSM). The catalytic activity of prepared spinel systems was explored for the one-pot synthesis of dihydropyrimidinone derivatives. The catalytic product was identified by comparison of melting point and the spectral data (FTIR).

Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2114 ◽  
Author(s):  
Yu Shao ◽  
Jia Chen ◽  
Xiang-Kui Ren ◽  
Xinlin Zhang ◽  
Guang-Zhong Yin ◽  
...  

In this article, we report the facile synthesis, self-assembly, and characterization of shape amphiphiles (BPOSS-PDI-X) based on isobutyl-functionalized polyhedral oligomeric silsesquioxane (BPOSS), perylene tetracarboxylic diimide (PDI), and (60)fullerene (C60) moieties. Firstly, an asymmetrically functionalized diblock shape amphiphile precursor (BPOSS-PDI-OH) was obtained through the one-pot reaction between perylene-3,4,9,10-tetracarboxylic dianhydride and two different amines, namely BPOSS-NH2 and 3-amino-1-propanol. It was further conjugated with C60-COOH to give a tri-block shape amphiphile (BPOSS-PDI-C60). Their chemical structures were thoroughly characterized by NMR, IR and MALDI-TOF MS spectrometry. In order to gain insights on the structure-property relationship, their self-assembly in gas phase, in solution, and in solid state were characterized using traveling wave ion mobility mass spectrometry (TWIM-MS), UV/Vis absorption, fluorescence emission spectrophotometer, and transmission electron microscopy, respectively. It was found that BPOSS-PDI-OH formed more complicated dimers than BPOSS-PDI-C60. Both samples showed unique aggregation behaviors in solution with increasing concentration, which could be attributed neither to H- nor to J-type and might be related to the discrete dimers. While BPOSS-PDI-C60 could hardly crystalize into ordered structures, BPOSS-PDI-OH could form nanobelt-shaped single crystals, which may hold potential applications in microelectronics.


RSC Advances ◽  
2015 ◽  
Vol 5 (33) ◽  
pp. 25816-25823 ◽  
Author(s):  
Aigin Bashti ◽  
Ali Reza Kiasat ◽  
Babak Mokhtari

Application of SBA@BiPy2+ 2Cl− nanocomposite as a novel environmentally safe heterogeneous nanoreactor for the one-pot solvent-free synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives.


MRS Advances ◽  
2017 ◽  
Vol 2 (64) ◽  
pp. 4025-4030 ◽  
Author(s):  
T. Kryshtab ◽  
H. A. Calderon ◽  
A. Kryvko

ABSTRACTThe microstructure of Ni-Mg-Al mixed oxides obtained by thermal decomposition of hydrotalcite-like compounds synthesized by a co-precipitation method has been studied by using X-ray diffraction (XRD) and atomic resolution transmission electron microscopy (TEM). XRD patterns revealed the formation of NixMg1-xO (x=0÷1), α-Al2O3 and traces of MgAl2O4 and NiAl2O4 phases. The peaks profile analysis indicated a small grain size, microdeformations and partial overlapping of peaks due to phases with different, but similar interplanar spacings. The microdeformations point out the presence of dislocations and the peaks shift associated with the presence of excess vacancies. The use of atomic resolution TEM made it possible to identify the phases, directly observe dislocations and demonstrate the vacancies excess. Atomic resolution TEM is achieved by applying an Exit Wave Reconstruction procedure with 40 low dose images taken at different defocus. The current results suggest that vacancies of metals are predominant in MgO (NiO) crystals and that vacancies of Oxygen are predominant in Al2O3 crystals.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Emilia Tomaszewska ◽  
Katarzyna Soliwoda ◽  
Kinga Kadziola ◽  
Beata Tkacz-Szczesna ◽  
Grzegorz Celichowski ◽  
...  

Dynamic light scattering is a method that depends on the interaction of light with particles. This method can be used for measurements of narrow particle size distributions especially in the range of 2–500 nm. Sample polydispersity can distort the results, and we could not see the real populations of particles because big particles presented in the sample can screen smaller ones. Although the theory and mathematical basics of DLS technique are already well known, little has been done to determine its limits experimentally. The size and size distribution of artificially prepared polydisperse silver nanoparticles (NPs) colloids were studied using dynamic light scattering (DLS) and ultraviolet-visible (UV-Vis) spectroscopy. Polydisperse colloids were prepared based on the mixture of chemically synthesized monodisperse colloids well characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM), DLS, and UV-Vis spectroscopy. Analysis of the DLS results obtained for polydisperse colloids reveals that several percent of the volume content of bigger NPs could screen completely the presence of smaller ones. The presented results could be extremely important from nanoparticles metrology point of view and should help to understand experimental data especially for the one who works with DLS and/or UV-Vis only.


2018 ◽  
Vol 73 (3-4) ◽  
pp. 191-195 ◽  
Author(s):  
Zahra Abshirini ◽  
Abdolkarim Zare

AbstractIn this research, initial production and characterization of a novel Brønsted-acidic ionic liquid, namely,N,N,N′,N′-tetramethylethylenediaminium-N,N′-disulfonic acid hydrogen sulfate ([TMEDSA][HSO4]2), has been described (characterization was achieved using Fourier-transform infrared spectroscopy,1H nuclear magnetic resonance (NMR),13C NMR, and mass and thermal gravimetric spectra). Thereafter, utilization of [TMEDSA][HSO4]2as a highly effectual catalyst for the synthesis of 4,4′-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) derivatives through the one-pot pseudo five-component reaction of phenylhydrazine (2 eq.) with ethyl acetoacetate (2 eq.) and arylaldehydes (1 eq.) in relatively mild conditions, has been reported.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3363 ◽  
Author(s):  
Aitor Arlegui ◽  
Zoubir El-Hachemi ◽  
Joaquim Crusats ◽  
Albert Moyano

A convenient protocol for the preparation of 5-phenyl-10,15,20-tris(4-sulfonatophenyl)porphyrin, a water-soluble porphyrin with unique aggregation properties, is described. The procedure relies on the one-pot reductive deamination of 5-(4-aminophenyl)-10,15,20-tris(4-sulfonatophenyl)porphyrin, that can be in turn easily obtained from 5,10,15,20-tetraphenylporphyrin by a known three-step sequence involving mononitration, nitro to amine reduction and sulfonation of the phenyl groups. This method provides the title porphyrin in gram scale, and compares very favorably with the up to now only described procedure based on the partial sulfonation of TPP, that involves a long and tedious chromatographic enrichment of the final compound. This has allowed us to study for the first time both the use of its zwitterionic aggregate as a supramolecular catalyst of the aqueous Diels–Alder reaction, and the morphology of the aggregates obtained under optimized experimental conditions by atomic force microscopy and also by transmission electron cryomicroscopy.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 440 ◽  
Author(s):  
Qi-Yuan Chen ◽  
Sheng-Ling Xiao ◽  
Sheldon Q. Shi ◽  
Li-Ping Cai

Using N,N-dimethylacetamide (DMAc) as a reducing agent in the presence of PVP-K30, the stable silver nanoparticles (Ag-NPs) solution was prepared by a convenient method for the in situ reduction of silver nitrate. The cellulose–Ag-NPs composite film (CANF) was cast in the same container using lithium chloride (LiCl) giving the Ag-NPs-PVP/DMAc solution cellulose solubility as well as γ-mercaptopropyltrimethoxysilane (MPTS) to couple Ag-NPs and cellulose. The results showed that the Ag-NPs were uniformly dispersed in solution, and the solution had strong antibacterial activities. It was found that the one-pot synthesis allowed the growth of and cross-linking with cellulose processes of Ag-NPs conducted simultaneously. Approximately 61% of Ag-NPs was successfully loaded in CANF, and Ag-NPs were uniformly dispersed in the surface and internal of the composite film. The composite film exhibited good tensile properties (tensile strength could reach up to 86.4 MPa), transparency (light transmittance exceeds 70%), thermal stability, and remarkable antibacterial activities. The sterilization effect of CANF0.04 against Staphylococcus aureus and Escherichia coli exceed 99.9%. Due to low residual LiCl/DMAc and low diffusion of Ag-NPs, the composite film may have potential for applications in food packaging and bacterial barrier.


2009 ◽  
Vol 156-158 ◽  
pp. 431-436
Author(s):  
P. Saring ◽  
C. Rudolf ◽  
L. Stolze ◽  
A. Falkenberg ◽  
Michael Seibt

We report on a light-beam-induced current (LBIC)-analysis of metal silicide defects arising from co-precipitation of copper and nickel in Cz-silicon-bicrystals produced by wafer direct bonding. Large colonies of silicide precipitates in the one wafer emerging from undisturbed growth from few nucleation sites were observed in different orientations with respect to the surface which correspond to Si {110} planes. From this, the colonies formed during copper-nickel co-precipitation reveal the same attributes as those colonies typical for copper precipitation in the absence of nickel. Oxygen related defects associated with a higher defect distribution in the other wafer were characterized by means of high resolution Transmission Electron Microscopy (TEM) and their temperature dependent LBIC signal.


2014 ◽  
Vol 70 (6) ◽  
pp. 1004-1010 ◽  
Author(s):  
Th. I. Shalaby ◽  
N. M. Fikrt ◽  
M. M. Mohamed ◽  
M. F. El Kady

This study investigated the applicability of magnetite Fe3O4 nanoparticles coated with chitosan (CMNs) for the removal of some toxic heavy metals from simulated wastewater. Magnetic nanomaterials were synthesized using the co-precipitation method and characterized by transmission electron microscope, scanning electron microscope, X-ray diffraction, and Fourier transformer infrared spectroscopy. The magnetic properties of the prepared magnetic nanoparticles were determined by a vibrating-sample magnetometer. Batch experiments were carried out to determine the adsorption kinetics of Cr(VI) and Cd(II) by magnetic nanoparticles. It is noteworthy that CMNs show a highly efficient adsorption capacity for low concentration Cr(VI) and Cd(II) ions solution, which can reach 98% within 10 min.


Sign in / Sign up

Export Citation Format

Share Document