scholarly journals Meeting UK heat demands in zero emission renewable energy systems using storage and interconnectors

Author(s):  
Tiziano Gallo Cassarino ◽  
Mark Barrett

Abstract With over a third of the United Kingdom's greenhouse gas emissions, decarbonising heat is key to achieving the Government's net-zero target by 2050. Here, we simulate high renewable zero-emission energy system architectures with heat supply based on the major options of district heating, heat pumps, and electrolytic hydrogen boilers. We adopt a novel whole system modelling approach that combines meteorology-driven hourly simulations of demand and supply with storage, flexible technologies, and interconnections on the European scale. Our results show that systems with heat supply based on consumer or district heat pumps require about four times less electricity per unit of heat, with a heat cost about half of that from electrolytic hydrogen boilers. Furthermore, we compare trade-offs between investment in different infrastructure components. For example, we find that, compared to the reference scenario, increasing renewable capacity by 33%, or interconnections by 200%, can lower system storage capacity by up to 50%.

Resources ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 52
Author(s):  
Annette Steingrube ◽  
Keyu Bao ◽  
Stefan Wieland ◽  
Andrés Lalama ◽  
Pithon M. Kabiro ◽  
...  

District heating is seen as an important concept to decarbonize heating systems and meet climate mitigation goals. However, the decision related to where central heating is most viable is dependent on many different aspects, like heating densities or current heating structures. An urban energy simulation platform based on 3D building objects can improve the accuracy of energy demand calculation on building level, but lacks a system perspective. Energy system models help to find economically optimal solutions for entire energy systems, including the optimal amount of centrally supplied heat, but do not usually provide information on building level. Coupling both methods through a novel heating grid disaggregation algorithm, we propose a framework that does three things simultaneously: optimize energy systems that can comprise all demand sectors as well as sector coupling, assess the role of centralized heating in such optimized energy systems, and determine the layouts of supplying district heating grids with a spatial resolution on the street level. The algorithm is tested on two case studies; one, an urban city quarter, and the other, a rural town. In the urban city quarter, district heating is economically feasible in all scenarios. Using heat pumps in addition to CHPs increases the optimal amount of centrally supplied heat. In the rural quarter, central heat pumps guarantee the feasibility of district heating, while standalone CHPs are more expensive than decentral heating technologies.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 584
Author(s):  
Chiara Magni ◽  
Sylvain Quoilin ◽  
Alessia Arteconi

Flexibility is crucial to enable the penetration of high shares of renewables in the power system while ensuring the security and affordability of the electricity dispatch. In this regard, heat–electricity sector coupling technologies are considered a promising solution for the integration of flexible devices such as thermal storage units and heat pumps. The deployment of these devices would also enable the decarbonization of the heating sector, responsible for around half of the energy consumption in the EU, of which 75% is currently supplied by fossil fuels. This paper investigates in which measure the diffusion of district heating (DH) coupled with thermal energy storage (TES) units can contribute to the overall system flexibility and to the provision of operating reserves for energy systems with high renewable penetration. The deployment of two different DH supply technologies, namely combined heat and power units (CHP) and large-scale heat pumps (P2HT), is modeled and compared in terms of performance. The case study analyzed is the future Italian energy system, which is simulated through the unit commitment and optimal dispatch model Dispa-SET. Results show that DH coupled with heat pumps and CHP units could enable both costs and emissions related to the heat–electricity sector to be reduced by up to 50%. DH systems also proved to be a promising solution to grant the flexibility and resilience of power systems with high shares of renewables by significantly reducing the curtailment of renewables and cost-optimally providing up to 15% of the total upward reserve requirements.


2020 ◽  
Vol 42 (4) ◽  
pp. 93-101
Author(s):  
T.A. Zheliezna ◽  
A.I. Bashtovyi

The aim of the work is to analyze possible ways of decarbonization of the EU heat supply sector. The task of the work is to identify the most promising areas and develop appropriate recommendations for Ukraine. The heat supply sector of the EU and Ukraine needs decarbonization, for which there is a big potential and different areas of implementation of relevant measures. In Europe, such a strategy is set out in the Roadmap for decarbonization of the EU heating sector until 2050, the main provisions of which are in line with objectives of the European Green Deal and the EU Strategy on Heating and Cooling. European experts have developed the concept of a smart energy system, which was taken into account when preparing the Roadmap for decarbonization of the EU heating sector until 2050. A number of carried out studies have shown that a smart energy system with 50% district heating integrated with other parts of the overall energy system is more efficient than a conventional energy system or the one based on decentralized heat supply, in terms of the possibility of using a high share of renewable energy. It is recommended for Ukraine to finalize the Concept of green energy transition until 2050, taking into account European approaches to the development of heating systems and the use of modern biofuels. It is also recommended to expand the current Concept of heat supply of Ukraine to the level of a strategy with an emphasis on the development of district heating systems, wide involvement of renewable energy sources and new technologies.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 745 ◽  
Author(s):  
Daniele Testi ◽  
Paolo Conti ◽  
Eva Schito ◽  
Luca Urbanucci ◽  
Francesco D’Ettorre

Micro-district heating networks based on cogeneration plants and renewable energy technologies are considered efficient, viable and environmentally-friendly solutions to realizing smart multi-energy microgrids. Nonetheless, the energy production from renewable sources is intermittent and stochastic, and cogeneration units are characterized by fixed power-to-heat ratios, which are incompatible with fluctuating thermal and electric demands. These drawbacks can be partially overcome by smart operational controls that are capable of maximizing the energy system performance. Moreover, electrically driven heat pumps may add flexibility to the system, by shifting thermal loads into electric loads. In this paper, a novel configuration for smart multi-energy microgrids, which combines centralized and distributed energy units is proposed. A centralized cogeneration system, consisting of an internal combustion engine is connected to a micro-district heating network. Distributed electric heat pumps assist the thermal production at the building level, giving operational flexibility to the system and supporting the integration of renewable energy technologies, i.e., wind turbines, photovoltaic panels, and solar thermal collectors. The proposed configuration was tested in a hypothetical case study, namely, a University Campus located in Trieste, Italy. The system operation is based on a cost-optimal control strategy and the effect of the size of the cogeneration unit and heat pumps was investigated. A comparison with a conventional configuration, without distributed heat pumps, was also performed. The results show that the proposed configuration outperformed the conventional one, leading to a total-cost saving of around 8%, a carbon emission reduction of 11%, and a primary energy saving of 8%.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 98 ◽  
Author(s):  
Rakesh Sinha ◽  
Birgitte Bak-Jensen ◽  
Jayakrishnan Radhakrishna Pillai ◽  
Hamidreza Zareipour

Active use of heat accumulators in the thermal system has the potential for achieving flexibility in district heating with the power to heat (P2H) units, such as electric boilers (EB) and heat pumps. Thermal storage tanks can decouple demand and generation, enhancing accommodation of sustainable energy sources such as solar and wind. The overview of flexibility, using EB and storage, supported by investigating the nature of thermal demand in a Danish residential area, is presented in this paper. Based on the analysis, curve-fitting tools, such as neural net and similar day method, are trained to estimate the residential thermal demand. Utilizing the estimated demand and hourly market spot price of electricity, the operation of the EB is scheduled for storing and fulfilling demand and minimizing energy cost simultaneously. This demonstrates flexibility and controlling the EB integrated into a multi-energy system framework. Results show that the curve fitting tool is effectively suitable to acknowledge thermal demands of residential area based on the environmental factor as well as user behaviour. The thermal storage has the capability of operating as a flexible load to support P2H system as well as minimize the effect of estimation error in fulfilling actual thermal demand simultaneously.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3337 ◽  
Author(s):  
Peter D. Lund ◽  
Klaus Skytte ◽  
Simon Bolwig ◽  
Torjus Folsland Bolkesjö ◽  
Claire Bergaentzlé ◽  
...  

A zero-emission pathway for the Nordic and Baltic region in Europe is described based on the comprehensive policy and scenario analyses, accompanied by energy system modelling. The analyses show that a least-cost strategy would massively employ renewable energy, particularly in the power sector. Through strong coupling across energy sectors and countries, electricity would play a central role in the decarbonization of the main energy sectors. In particular power-to-heat conversion, where heat storage appears important in addition to existing hydropower. Technical and regulatory barriers in front of increased sector coupling and flexibility were identified, and policy measures are proposed to overcome these. In addition to a high carbon price, dynamic tariffs and taxation of electricity would be important to allow market signals for flexibility to reach end-users. A stronger power transmission connection from the Nordics to the mainland-Europe and the United Kingdom would be beneficial for the emission reductions and renewable energy use. The transition pathway analysis points out socio-technical issues such as social acceptance of large-scale new infrastructures (e.g., wind, cables). The energy system optimizations indicate that most of the investments needed for the zero-emission pathway until 2050 would take place already by 2030.


2019 ◽  
Vol 9 (15) ◽  
pp. 3194 ◽  
Author(s):  
Urbanucci ◽  
Testi ◽  
Bruno

District heating and cooling networks based on trigeneration systems and renewable energy technologies are widely acknowledged as an energy efficient and environmentally benign solution. These energy systems generally include back-up units, namely fossil-fuel boilers and electric chillers, to enhance system flexibility and cover peak energy demand. On the other hand, 4th generation district heating networks are characterized by low-temperature water distribution to improve energy and exergy efficiencies. Moreover, reversible heat pumps are a versatile technology, capable of providing both heating and cooling, alternately. In this paper, the integration of reversible heat pumps as single back-up units in hybrid renewable trigeneration systems serving low-energy micro-district heating and cooling networks is investigated. A detailed modeling of the system is provided, considering part-load and ambient condition effects on the performance of the units. Size and annual operation of the proposed system are optimized in a case study, namely a large office building located in Pisa (Italy), by means of a genetic algorithm-based procedure. A comparison with the conventional trigeneration system is performed in terms of economic and environmental perspectives. Results show that the integration of reversible heat pumps is an economically viable solution capable of reducing by 7% the equivalent annual cost, increasing the installed power of renewables up to 23%, and lowering by 11% carbon dioxide emissions, compared to the energy system with conventional back-up units.


2020 ◽  
Vol 2 ◽  
Author(s):  
Wolfgang Gruber-Glatzl ◽  
Christoph Brunner ◽  
Sarah Meitz ◽  
Hans Schnitzer

Wastewater treatment plants (WWTP) are among the largest energy consumers in municipalities and cause high operating costs. At the same time, many WWTPs produce biogas and have immense untapped potential for the integration of heat pumps (HP). District heating operators are looking for new possibilities to diversify their heat production portfolio and to provide cheap and clean heat to their customers. In our work, we investigate the case study of the WWTP Gleisdorf (Austria) and propose a combination of biogas utilization and heat pump integration to deliver heat for all internal thermal processes as well as to a 1,000 m heat connection line (HCL) toward the district heating network. The net annual costs of different scenarios were calculated for economic comparison. Negative net annual costs mean net annual savings. The reference scenario (biogas combined heat and power, no HCL, no HP; net annual costs of −51,000 €/year) is compared with three different heat pump integration options (HP-IO). The HP-IOs are considering different hydraulic connections, flow temperatures, and heat exchanger placement. The HP-IO-1 focuses on the low-temperature internal demands, but proves to be too limited to balance out the high cost of the HCL. HP-IO-2 operates at higher temperatures (75°C) leading to the lowest efficiency, but ultimately achieving the lowest net annual costs (−57,700 €/years with a 750 kWth HP). HP-IO-3 uses a serial heating concept trying to take advantage of lower flow temperatures while also delivering heat to the district heating network. At 300–400 kWth this leads to net annual costs of −50,100 €/years. The price ratio of 0.5 (40 €/MWh selling price of heat to 80 €/MWh purchasing price of electricity) are varied to analyze the sensitivity of the results. HPs already play an increasing role in the district heating sector, using sewage water as a heat source. The combined analysis of biogas utilization, HP integration options and the thermal as well as electrical demands of WWTP and district heating networks allow the determination of the most viable option.


Sign in / Sign up

Export Citation Format

Share Document