Microstructures and Mechanical Properties of Ti3SiC2/Al2O3 and Ti3SiC2-TiC/Al2O3 Composite Ceramics by Modifying Al2O3 Content Via in-situ Synthesized

2020 ◽  
Author(s):  
Jun Ji ◽  
Xuye Wang ◽  
Jinman Yu ◽  
Qinggang Li ◽  
Zhi Wang ◽  
...  

Abstract Ti3SiC2/Al2O3 and Ti3SiC2-TiC/Al2O3 composite ceramics with various Al2O3 fractions were prepared by Ti, Si, Al, TiC and Al2O3 powers via in-situ reaction. Al2O3 contents in raw materials could influence the reaction process of Ti3SiC2 generated. It would lead to react completely when the Al2O3 volume percentage between 50% to 70%, otherwise TiC as an impurity would be found. Finally the Ti3SiC2/Al2O3 composites with 54.4 wt% Ti3SiC2, and Ti3SiC2-TiC/Al2O3 composites with 54.7 wt% Ti3SiC2 and 9.2 wt% TiC were fabricated successfully. There were two types of TiC existed in composites, called intragranular and intergranular particles. The Ti3SiC2-TiC/Al2O3 composite ceramics with 9.2 wt% TiC showed the higher mechanical properties than Ti3SiC2/Al2O3 composite. From the analyzing of microcrack propagation paths, the dispersed TiC particles as reinforcement agents would cause significant crack deflection, improving the flexural strength and fracture toughness up to 492 MPa and 7.8 MPa.m1/2 respectively.

2014 ◽  
Vol 602-603 ◽  
pp. 438-442
Author(s):  
Lei Yu ◽  
Jian Yang ◽  
Tai Qiu

Fully dense (ZrB2+ZrC)/Zr3[Al (Si)]4C6 composites with ZrB2 content varying from 0 to 15 vol.% and fixed ZrC content of 10 vol.% were successfully prepared by in situ hot-pressing in Ar atmosphere using ZrH2, Al, Si, C and B4C as raw materials. With the increase of ZrB2 content, both the bending strength and fracture toughness of the composites increase and then decrease. The synergistic action of ZrB2 and ZrC as reinforcements shows significant strengthening and toughing effect to the Zr3[Al (Si)]4C6 matrix. The composite with 10 vol.% ZrB2 shows the optimal mechanical properties: 516 MPa for bending strength and 6.52 MPa·m1/2 for fracture toughness. With the increase of ZrB2 content, the Vickers hardness of the composites shows a near-linear increase from 15.3 GPa to 16.7 GPa. The strengthening and toughening effect can be ascribed to the unique mechanical properties of ZrB2 and ZrC reinforcements, the differences in coefficient of thermal expansion and modulus between them and Zr3[Al (Si)]4C6 matrix, fine grain strengthening and uniform microstructure derived by the in situ synthesis reaction.


2011 ◽  
Vol 43 (3) ◽  
pp. 289-294 ◽  
Author(s):  
J. Zhu ◽  
L. Ye ◽  
F. Wang

A Ti3AlC2/Al2O3 nanocomposite was synthesized using Ti, Al, C and TiO2 as raw materials by a novel combination of high-energy milling and hot pressing. The reaction path of the 3Ti-8C-16Al-9TiO2 mixture of powders was investigated, and the results show that the transitional phases TiC, TixAly and Al2O3 are formed in high-energy milling first, and then TixAly is transformed to the TiAl phase during the hot pressing. Finally, a reaction between TiC and TiAl occurs to produce Ti3AlC2 and the nanosized Ti3AlC2/Al2O3 composite is synthesized. The Ti3AlC2/Al2O3 composite possessed a good combination of mechanical properties with a hardness of 6.0 GPa, a flexural strength of 600 MPa, and a fracture toughness (K1C) of 5.8 MPa?m1/2. The strengthening and toughening mechanisms were also discussed.


2020 ◽  
Vol 9 (6) ◽  
pp. 739-748
Author(s):  
Bingzhu Wang ◽  
Daxin Li ◽  
Zhihua Yang ◽  
Dechang Jia ◽  
Jingyi Guan ◽  
...  

AbstractThe in situ nano Ta4HfC5 reinforced SiBCN-Ta4HfC5 composite ceramics were prepared by a combination of two-step mechanical alloying and reactive hot-pressing sintering. The microstructural evolution and mechanical properties of the resulting SiBCN-Ta4HfC5 were studied. After the first-step milling of 30 h, the raw materials of TaC and HfC underwent crushing, cold sintering, and short-range interdiffusion to finally obtain the high pure nano Ta4HfC5. A hybrid structure of amorphous SiBCN and nano Ta4HfC5 was obtained by adopting a second-step ball-milling. After reactive hot-pressing sintering, amorphous SiBCN has crystallized to 3C-SiC, 6H-SiC, and turbostratic BN(C) phases and Ta4HfC5 retained the form of the nanostructure. With the in situ generations of 2.5 wt% Ta4HfC5, Ta4HfC5 is preferentially distributed within the turbostratic BN(C); however, as Ta4HfC5 content further raised to 10 wt%, it mainly distributed in the grain-boundary of BN(C) and SiC. The introduction of Ta4HfC5 nanocrystals can effectively improve the flexural strength and fracture toughness of SiBCN ceramics, reaching to 344.1 MPa and 4.52 MPa·m1/2, respectively. This work has solved the problems of uneven distribution of ultra-high temperature phases in the ceramic matrix, which is beneficial to the real applications of SiBCN ceramics.


2010 ◽  
Vol 105-106 ◽  
pp. 16-19 ◽  
Author(s):  
Hong Xia Lu ◽  
Zhang Wei ◽  
Rui Zhang ◽  
Hong Liang Xu ◽  
Hai Long Wang ◽  
...  

Nano-Fe particles coating Al2O3 composite powders were prepared by heterogeneous precipitation method with nanometer -Al2O3 and Fe(NO3)3•9H2O as raw materials. The composite powders were analyzed by DSC-TG, XRD,SEM and Zeta potential. Results showed that Fe coating Al2O3 nanometer composite powders were obtained in the condition of being sintered at 500°C for 30min and reduced at 700°C for 1h in H2. The coating Fe nanometer particles are in the shape of sphericity with diameter about 30nm and the dispersion of the powders is uniform. Al2O3/Fe composite ceramics were obtained by hot-pressing (30MPa). The mechanical properties of the composite were investigated after hot press at different temperatures. With the increasing of Fe content in composite ceramics, the hardness of the composite is decreased. Fracture toughness of 10mol%Fe content is 5.62MPa after sintered at 1400°C, which is increasing 57% high than that of monolithic Al2O3 ceramics.


2020 ◽  
Author(s):  
Baofu Qiu ◽  
Xiaoming Duan ◽  
Zhuo Zhang ◽  
Chen Zhao ◽  
Bo Niu ◽  
...  

Abstract BN/La-Al-Si-O composite ceramics were fabricated by hot-pressed sintering using h-BN, La2O3, Al2O3 and amorphous SiO2 as the raw materials. The effects of sintering temperature on the microstructural evolution, bulk density, apparent porosity, and mechanical properties of h-BN composite ceramics were investigated. The results indicated that La-Al-Si-O liquid phase was formed during sintering process, which provided an environment for the growth of h-BN grains. With increasing sintering temperature, the cristobalite phase precipitation and h-BN grain growth occurred at the same time, which had the significant influence on the densification and mechanical properties of h-BN composite ceramics. The best mechanical properties of BN/La-Al-Si-O composite ceramics were obtained under sintering temperature of 1700 °C, and the elastic modulus, flexural strength, and fracture toughness were 80.5 GPa, 266.4 MPa and 3.25 MPa·m1/2, respectively.


2018 ◽  
Vol 766 ◽  
pp. 77-82
Author(s):  
Jiraprabha Khajornboon ◽  
Kouichiro Washijima ◽  
Takeshi Shiono

One of main raw materials for monolithic refractory is calcium aluminate cement which provides CA6 hexagonal plate-like microstructure with self-toughening properties and fracture resistance. In the present study, in-situ CA6 was formed by using sintered alumina mixing with alumina cement in stoichiometric composition to achieve 100 mass% and 50 mass% of CA6 in alumina monolithic refractory with 2 mass% of silica addition. Samples were fired from 1400-1500°C for 5 h and characterized for physical and mechanical properties. The results showed that both samples could not obtain CA6 content as expected and apparent porosity did not exhibit in the same tendency. However, only proper amount of CA6 content could gain proper amount of apparent porosity which is the main effect of mechanical properties. Especially the formation of CA6 lower than 50 mass% with the presence of low melting phase caused low apparent porosity and led to high fracture toughness and effective fracture energy.


2011 ◽  
Vol 695 ◽  
pp. 227-230
Author(s):  
Liu Yi Xiang ◽  
Fen Wang ◽  
Jian Feng Zhu ◽  
Xiao Feng Wang

Al2O3/TiAl composites were successfully fabricated by hot-press-assisted exothermic dispersion method with powder mixtures of Ti, Al, TiO2and Cr2O3as raw materials. The effect of sintering temperature on the microstructures and mechanical properties of Al2O3/TiAl composites has been investigated. The results show that the Rockwell hardness and density of the composites increased with increasing sintering temperature. But the flexural strength and fracture toughness peaked at 825 MPa and 7.29 MPa·m1/2, respectively, when the sintering temperature reached to1300 °C.


2010 ◽  
Vol 44-47 ◽  
pp. 2504-2508 ◽  
Author(s):  
Jian Feng Zhu ◽  
Lan Ye ◽  
Xi Hong Li ◽  
Fen Wang

A novel method of the combination of high energy milling and hot pressing was adapted to fabricate dense titanium nitride-alumina (TiN/Al2O3) in situ composites using Ti, Al and TiO2 as raw materials. Full dense and pure TiN/Al2O3 composites were fabricated at 1300 °C for 1 h under 10 MPa. The composition, microstructure and mechanical properties of the as-fabricated products were investigated. The results show that the synthesized TiN/Al2O3 composites possess high purity. The TiN/Al2O3 composites have a good combination of mechanical properties of hardness of 18.0 GPa, the flexural strength of 500 MPa, and the fracture toughness (KIC) of 5.2 MPa•m1/2. The strengthening and toughening mechanisms are also discussed.


2011 ◽  
Vol 239-242 ◽  
pp. 1243-1247
Author(s):  
Xiu Mei Feng ◽  
Xiao Qing Lian ◽  
Ming Xue Jiang ◽  
Yi Ner He

Al2O3-Ti(C,N)composite ceramics were prepared by in situ aluminothermic reduction and pressureless sintering. The effects of different Ti(C,N) contents and sintering temperatures on microstructure and mechanical properties (bulk density ,apparent porosity and blending strength)of samples were investigated through experiments.The results show that Al2O3-Ti(C,N) composite ceramics with 10 wt.% Ti(C,N) prepared using titanium dioxide and metal aluminum powder as raw materials and sintered at 1300 °C for 3h under a flowing nitrigen stream have good properties ,with bulk density 2.94g/cm3,apparent porosity 26.4%, and blending strength reaches to 28.04 MPa. According to the microstructure analysis,the fine in situ synthesis Ti(C,N) particles are uniformly dispersed in tabular alundum matrix. Ti(C,N) and tabular alundum phases are closely combined and can inhibit grain growth each other,which is benefical in improving the comprehensive properties of composite ceramics.


2020 ◽  
Author(s):  
Bingzhu Wang ◽  
Li Daxin ◽  
Zhihua Yang ◽  
Dechang Jia ◽  
Jingyi Guan ◽  
...  

Abstract In this paper, the in situ nano Ta 4 HfC 5 reinforced SiBCN-Ta 4 HfC 5 composite ceramics were prepared by a combination of two-step mechanical alloying and reactive hot-pressing sintering. The microstructural evolution and mechanical properties of the SiBCN-Ha 4 HfC 5 were studied. After the first-step milling of 30 h, the raw materials of TaC and HfC undergone crushing, cold sintering and short-range interdiffusion to finally obtain the high pure nano Ta 4 HfC 5 . A hybrid structure of amorphous SiBCN and nano Ta 4 HfC 5 was obtained by adopting a second-step ball-milling. After reactive hot-pressing sintering, amorphous SiBCN has crystallized to nano SiC and turbostratic BN(C) phases while Ta 4 HfC 5 retained the form of nano structure. With the in situ generation of 2.5 wt% Ta 4 HfC 5 , Ta 4 HfC 5 is preferentially distributed within the turbostratic BN(C); however, as Ta 4 HfC 5 content further raised to 10 wt%, it mainly distributed in the grain-boundary of BN(C) and SiC. The introduction of Ta 4 HfC 5 nanocrystals can effectively improve the flexural strength and fracture toughness of SiBCN ceramics, reaching to 344.1 MPa and 4.52 MPa•m 1/2 , respectively.


Sign in / Sign up

Export Citation Format

Share Document