scholarly journals Thermal Finite Element Modelling of the Laser Beam Welding of Tailor Welded Blanks through an Equivalent Volumetric Heat Source

Author(s):  
Vito Busto ◽  
Donato Coviello ◽  
Andrea Lombardi ◽  
Mariarosaria De Vito ◽  
Donato Sorgente

Abstract In last decades, several numerical models of the keyhole laser welding process were developed in order to simulate the joining process. Most of them are sophisticated multiphase numerical models tempting to include all the several different physical phenomena involved. However, less computationally expensive thermo-mechanical models that are capable of satisfactorily simulating the process were developed as well. Among them, a moving volumetric equivalent heat source, whose dimensions are calibrated on experimental melt pool geometries, can estimate some aspects of the process using a Finite Element Method (FEM) modelling with no need to consider fluid flows. In this work, a double-conical volumetric heat source is used to arrange a combination of two half hourglass-like shapes with different dimensions each other. This particular arrangement aims to properly assess the laser joining of a Tailor Welded Blank (TWB) even in case of butt joint between sheets of different thicknesses. Experiments of TWBs made of 22MnB5 steel sheets were conducted in both equal and different thicknesses configurations in order to validate the proposed model. The results show that the model can estimate in a satisfactory way the shape and dimensions of the fused zone in case of TWB made of sheets with different thickness.

2014 ◽  
Vol 1016 ◽  
pp. 753-757 ◽  
Author(s):  
Obeid Obeid ◽  
Giulio Alfano ◽  
Hamid Bahai

A numerical analysis of thermal phenomena occurring during lined-pipe welding is presented in this paper. Numerical models of surfaces and volumetric heat sources were used to predict the time evolution of the temperature field both in a corrosion-resistance-alloy (CRA) liner, made of SUS304 stainless steel (SS), and for the single-pass girth welding of a carbon-manganese (C-Mn) steel pipe. Using the finite-element code ABAQUS, three-dimensional non-liner heat-transfer analyses was carried out to simulate the gas-tungsten-arc (GTA) welding process used in liner welding and the metal-inert-gas (MIG) welding process consumed in C-Mn steel backing welding. FORTRAN user subroutines were coded to implement the movable welding heat source and heat transfer coefficient models. The thermal history was numerically computed at locations where circumferential angles from the welding start/atop position are 90°, 180° and 270° with respect to axial distances from the weld centerline (WC). Keywords: Finite element analysis FEA, CRA Liner, C-Mn steel backing, Heat source, Thermal history.


2014 ◽  
Vol 887-888 ◽  
pp. 1280-1283 ◽  
Author(s):  
Eva Babalová ◽  
Mária Behúlová

Transient temperature fields during formation of dissimilar butt joints of Ti-Al alloy plates by laser welding process were investigated by numerical simulation. Gaussian volumetric heat source was applied to model the heat input to the weld. For verification of the developed simulation model and results of numerical simulation, Ti-Al butt weld joints were produced by TruDisk 4002 disk laser. During experiments, the temperatures were measured by thermocouples and subsequently compared with results of FEM analysis. Based on the results of preliminary numerical calculations and experimental tests, the parameters of the laser beam welding for production of dissimilar Ti-Al butt joints will be optimized using FEM simulations in the program code ANSYS.


2011 ◽  
Vol 383-390 ◽  
pp. 6225-6230
Author(s):  
K.R. Balasubramanian ◽  
T. Suthakar ◽  
K. Sankaranarayanasamy ◽  
G. Buvanashekaran

Laser beam welding (LBW) is a fusion joining process that uses the energy from a laser beam to melt and subsequently crystallize a metal, resulting in a bond between parts. In this study, finite element method (FEM) is used for predicting the weld bead profile of laser welding butt, lap and T-joints. A three-dimensional finite element model is used to analyze the temperature distribution weld bead shape for different weld configurations produced by the laser welding process. In the model temperature-dependent thermo physical properties of AISI304 stainless steel, effect of latent heat of fusion and convective and radiative boundary conditions are incorporated. The heat input to the FEM model is assumed to be a 3D conical Gaussian heat source. The finite element software SYSWELD is employed to obtain the numerical results. The computed weld bead profiles for butt, lap and T-joints are compared with the experimental profiles and are found to be in agreement.


2015 ◽  
Vol 60 (4) ◽  
pp. 2559-2568 ◽  
Author(s):  
W. Piekarska

The paper concerns the mathematical and numerical modeling of phase transformations in solid state occurring during welding. The analysis of the influence of heating rate, cooling rate and maximum temperatures of thermal cycles on the kinetics of phase transformations is presented. On the basis of literature data and experimental studies the evaluation of classic mathematical and numerical models of phase transformation is presented with respect to the advanced methods of welding by using a high speed and a high power heat source. The prediction of the structure composition in laser welded butt-joint made of S460 steel is performed, where phase transformations are calculated on the basis of modified numerical models. Temperature distributions are determined as well as the shape and size of fusion zone and heat affected zone (HAZ). Temperature field is obtained by the solution of transient heat transfer equation with convective term and external volumetric heat source taken into account. Latent heat of fusion, evaporation and heats generated during phase transformations in solid state are considered in the numerical algorithm due to the large temperature range present in analyzed process. Results of the numerical prediction of structure composition in HAZ are presented in this work. Obtained results of computer simulations are compared to experimental research performered on the laser welded joint.


2004 ◽  
Vol 120 ◽  
pp. 785-792
Author(s):  
C. Darcourt ◽  
J. M. Roelandt ◽  
M. Rachik ◽  
D. Deloison ◽  
B. Journet

The present work is being done in the framework of a national program about the lightening of aeronautical structures and describes a three-dimensional finite element simulation of the laser beam welding process. The targeted aeronautical structures are stiffened panels in aluminum alloys, which tend to replace riveted assemblies. Semi-coupled thermomechanical finite element analyses have been carried out to evaluate the magnitude and distribution of welding-induced residual stresses in order to take them into account for fatigue sizing. The finite element code MSC.Marc is used for the different calculations. Specific welding features have been added to the code through the implementation of a moving heat source or an elastoviscoplastic law. Experimental tests have been carried out in order to provide mechanical and thermal databases to the model. Monitored experimental welding have been made for comparisons with the simulation. In particular, results of thermocouple measurements have permitted to improve the thermal model.


2010 ◽  
Vol 154-155 ◽  
pp. 1468-1471 ◽  
Author(s):  
Yu Quan Guo ◽  
Dong Ming Guo ◽  
Guang Yi Ma ◽  
Dong Jiang Wu

In this paper, a three-dimensional finite element model is developed to compute thermal phenomena of 0.5 mm thick Hastelloy C-276 alloy sheets during pulsed laser beam welding (PLBW). Temperature-dependent thermal properties of Hastelloy C-276 alloy, effect of latent heat of fusion, and the convective and radiative boundary conditions are taken into account in the model. The space-time temperature distributions in a butt-joint weld produced by the PLBW process are predicted from the beginning of welding to the final cooling. The heat input to the model is assumed to be a double ellipsoid heat source. The finite element calculations are performed by using ANSYS code with the parametric design capabilities. Experiments were carried out to determine the temperature evolution during welding and to measure the cross section profile of the weld bead. By comparing the simulation results with the corresponding experimental findings, it is found that they are in a good agreement. The validity and applicability of the numerical simulation model are confirmed.


1993 ◽  
Vol 115 (1) ◽  
pp. 34-41 ◽  
Author(s):  
Y.-N. Liu ◽  
E. Kannatey-Asibu

An analytical solution of the dual, laser beam welding process is presented. It is based on a Gaussian distributed leading heat source for preheating, followed by a line source for the actual welding process. The effect of beam distribution parameters as well as interbeam spacing and relative power intensities on the resulting temperature distribution and cooling rate are presented. For a preheating Gaussian source of power 1550 W, the depth of region above 500°C is 2.25 mm, and that above 250°C is 3.5 mm. The cooling rate at the weld centerline without preheating for a temperature of 650° C, input power 1800 W, and welding velocity 20 mm/s is found to be 1004°C/s. Under the same conditions, the cooling rate with a 1550 W preheating Gaussian distributed heat source (beam distribution parameter 1 mm, and interbeam spacing 10 mm) is reduced to 570°C/s.


2011 ◽  
Vol 183 ◽  
pp. 241-248 ◽  
Author(s):  
A. Marmołowski ◽  
W. Kiełczyński

Great interest of the laser beam welding in industry is a new theoretical task, making planning the welding procedure specification and the quality control of welded joints easier. Estimating and calculating the dimensions of a weld pool and temperature distribution near weld mainly concern heat source modelling. In the presented work calculations of welding pool shape and thermal field for cylindrical-powered-normally model of heat source have been presented. Parameters of the model of heat source and weld pool geometry were determined using analytical-numerical calculations. The results of numerical calculations were compared with the experimental data for butt joint made by CO2 laser beam. Comparable results have been observed. Practical recommendations for assumptions of model parameters - the flux density energy distribution of the heat source in case of calculations of the thermal field in the vicinity of a weld pool are given.


Sign in / Sign up

Export Citation Format

Share Document