scholarly journals Influences of Expanding Angles on Extrusion-Shearing-Expansion Processing of AZ31 Magnesium Alloy Thin-Walled Tubes

Author(s):  
Ye TIAN ◽  
Hong jun HU ◽  
Pengcheng LIANG ◽  
Dingfei ZHANG ◽  
Zhongwen OU

Abstract To research the influence mechanisms of expanding angles on extrusion-shearing-expansion(ESE) process of AZ31 magnesium alloy thin-walled tubes,the effects of different expanding angles on microstructures and mechanical properties of AZ31 magnesium alloy during extrusion-shear-expansion process have been investigated by optical microscope(OM),scanning electron microscope (SEM),X-ray diffractometer(XRD).Three expanding angles 130°,140°,150° have been used.The forming loads varying with expanding ratios,and equivalent strains at various expanding angles have been simulated by Deform-3D software.The research results show that the qualities and mechanical properties of the formed tube are satisfactory, and extrusion-shearing-expanding process can refine the grain of AZ31 magnesium alloy thin-walled tubes.The grain sizes decrease with the decrease of expanding angles.When the expanding angle is 140°,the comprehensive mechanical properties are best,and yield strength is 122.3MPa,the tensile strength 288.6MPa,the elongation 15.2%, the texture intense is optimized due to the DRX.The deflections of basal plane for most grains are obvious relative to the extrusion direction(ED).

2013 ◽  
Vol 303-306 ◽  
pp. 2524-2527 ◽  
Author(s):  
Lei Wang ◽  
Guang Hui Min ◽  
Pan Pan Gao ◽  
Xin Ying Wang ◽  
Hua Shun Yu ◽  
...  

The microstructure of magnesium alloy sheets (nominal composition Mg–6Zn–Y in at. %) was investigated with the Optical Microscope (OM), Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD) technique after the annealing treatment. Tensile test at room temperature was performed to show the influence of annealing treatment on mechanical properties. Experimental results indicate that there are a large number of twin crystals appearing in microstructure of the extruded Mg-Zn-Y alloy sheet at 350 °C. The distinct icosahedral phase appears on the α-Mg matrix in granular form and the strength gets largely improved to the maximum. The uniform distribution of isometric crystal contributes to the best elongation at the annealing temperature of 400 °C.


2014 ◽  
Vol 893 ◽  
pp. 387-391
Author(s):  
Shan Jiang ◽  
Bin Zeng ◽  
Lyes Douadji

AZ31 magnesium alloy samples were compressed to different strains at room temperature and examined through the optical microscope, X-ray diffraction (XRD) and scanning electronic microscope. The results show that the produced twins were mainly the {102} type, and then the {101} type and {102}-{101} type. The size and amount of the twins increased with the strains growth, and after the saturation of twins in the grains the samples fractured. The compressed texture with the basal planes perpendicular to the compression direction also become stronger with strain increase. The {102} twinning deformation played an important role in changing the microstructure and properties of the magnesium alloy at room temperature.


2011 ◽  
Vol 189-193 ◽  
pp. 4221-4226 ◽  
Author(s):  
Zhan Yong Zhao ◽  
Fu Rong Cao ◽  
Ren Guo Guan

AZ31 magnesium alloy profiles were prepared by continuous rheo-extrusion process, and effects of solution and aging treatments on the microstructures and mechanical properties was investigated by OLYMPUS optical microscope, scanning electron microscope, energy dispersive spectroscopy device and tensile machine. The results reveal that saturated solid solution was formed in the profile at a solution temperature of 415 °C and 16 hours. During aging treatment of saturated solid solution, β-Mg17Al12 phase nucleates firstly at grain boundaries and takes on globular growth, which is mainly due to the lower interfacial energy in coherent or semi-coherent interface between β-Mg17Al12 phase and matrix phase. Lower interfacial energy is favorable to the nucleation and growth of β-Mg17Al12 phase at grain boundary. With the increase of aging time or the rise of aging temperature, β-Mg17Al12 phase precipitates out gradually from grain interior and starts to grow in globular shape. After β-Mg17Al12 phase grows to a certain extent, it grows in lamellar shape along the orientation of lower mismatch between β-Mg17Al12 phase and matrix phase. After solution at 415°C and 16h and aging at 180°C and 8h, the ultimate tensile strength and elongation to failure of the profile are 305MPa and 13%, respectively.


2007 ◽  
Vol 558-559 ◽  
pp. 781-786 ◽  
Author(s):  
Yasuaki Nagata ◽  
M. Noda ◽  
Hideharu Shimizu ◽  
Kunio Funami ◽  
H. Mori

High-strain conditions as a means of microstructure control have recently been investigated to improve the ductility and enhance the strength of magnesium alloys. The level of superplastic deformation and the fatigue properties of the wrought materials have also been studied. In comparison, only a small number of such reports are available on cast materials. As a part of the search for applications of magnesium alloys, comparisons of structural changes and mechanical properties should be made between wrought and cast materials. In the present study, the grain refinement of cast and extruded materials made from commercially available AZ31 magnesium alloy was conducted using a multi-axial alternative forging method. The relationships between the structural changes and working processes and the relationships between changes in the mechanical properties as well as grain sizes and fatigue properties are discussed. Both the cast and the extruded materials tended to exhibit uniform crystalline structures with an increasing number of working cycles. Dynamic recrystallization was observed during both working and static recrystallization during both reheating and holding. When an equivalent strain of 0.6 was applied, the localized formation of ultra-fine grains of 0.5 μm was observed. The tensile strength and yield stress had maximum values in the initial stage of the multi-axial alternative forging. Although ductility improved with higher numbers of working cycles, the strength decreased. This can be explained by the dynamic and static recrystallization processes and work softening.


2011 ◽  
Vol 194-196 ◽  
pp. 1374-1377
Author(s):  
Chang Qing Li ◽  
Quan an Li ◽  
Xing Yuan Zhang ◽  
Qing Zhang

The microstructure and mechanical properties of aged Mg-5.5Al-1.2Y magnesium alloy with Sb addition are investigated by optical microscope, SEM and X-ray diffraction analyzer. The results show that with proper content of Sb addition,the microstructure of Mg-5.5Al-1.2Y magnesium alloy is refined obviously and high melting point intermetallic compounds Sb3Y5 and Mg3Sb2 are formed. Meanwhile, the β-Mg17Al12 phase is more distributed. With the increase of Sb addition, the mechanical properties of the alloy at room and elevated temperature increase at first, and then decrease. When the content of Sb is up to 0.5%, the values of tensile strength and elongation at room temperature, 150ºC and 175ºC are up to their maxima synchronously, 241MPa /16.84%, 198MPa/20.27.86% and 169MPa/21.21% respectively.


2012 ◽  
Vol 182-183 ◽  
pp. 311-314
Author(s):  
Wen Yan Duan

As-cast AM60 magnesium alloy was solid dissolved with exercising different pressures to it. The microstructure of the products was characterized by optical microscope and X-ray diffraction. The mechanical properties of the products were investigated by microhardness tester and tensile testing. The results show that increasing the exercising pressure promotes the fracture and dissolution into the α-Mg matrix of the coarse β-Mg17Al12 phases distributed along the grain boundaries with a network appearance. With increasing the exercising pressure, the tensile strength, elongation percentage and percentage reduction of area of the alloy significantly increase, but its microhardness decreases.


Author(s):  
Wenxue Fan ◽  
Hai Hao

Abstract Grain refinement has a significant influence on the improvement of mechanical properties of magnesium alloys. In this study, a series of Al–Ti–C-xGd (x = 0, 1, 2, 3) master alloys as grain refiners were prepared by self-propagating high-temperature synthesis. The synthesis mechanism of the Al–Ti–C-xGd master alloy was analyzed. The effects of Al–Ti–C-xGd master alloys on the grain refinement and mechanical properties of AZ31 (Mg-3Al-1Zn-0.4Mn) magnesium alloys were investigated. The results show that the microstructure of the Al–Ti–C-xGd alloy contains α-Al, TiAl3, TiC and the core–shell structure TiAl3/Ti2Al20Gd. The refining effect of the prepared Al–Ti–C–Gd master alloy is obviously better than that of Al–Ti–C master alloy. The grain size of AZ31 magnesium alloy was reduced from 323 μm to 72 μm when adding 1 wt.% Al–Ti–C-2Gd master alloy. In the same condition, the ultimate tensile strength and elongation of as-cast alloy were increased from 130 MPa, 7.9% to 207 MPa, 16.6% respectively.


Sign in / Sign up

Export Citation Format

Share Document