scholarly journals The Anxiolytic effect of salicylic acid is mediated via the GABAergic system

Author(s):  
Sahel Motaghi ◽  
Hadi Moghaddam Dizaj Herik ◽  
Gholamreza Sepehri ◽  
Mehdi Abbasnejad ◽  
Saeed esmaeli-Mahani

Abstract Salicylic acid (SA) is a natural phenolic compound in plants with many beneficial effects for humans. The anxiolytic effect of this compound has been reported in animal models, but its mechanism of action remains unclear. In this study, by using the fear potentiated plus maze test, we evaluated the effect of salicylic acid on the gene expression of the main form of GABA synthesizing enzyme i.e., the enzyme glutamic acid decarboxylase 67 (GAD67), in the ventral subiculum of the hippocampus. Also, the hypnotic effect of Salicylic acid was evaluated. Animals were divided into the solvent, (SA) and diazepam treated groups (n = 6). For evaluating the anxiolytic effect of Salicylic acid, animals were subjected to 2 hours of isolation, before placing them in the elevated plus maze (EPM). Afterward, the ventral part of the hippocampus was removed for evaluating the change in (GAD67) gene expression by the reverse transcription-quantitative polymerase chain reaction (RTqPCR) technique. The hypnotic effect of Salicylic acid was evaluated in the ketamine induced sleeping test. Our results showed that Salicylic acid at 10, 30 (mg/kg) increased time spent and entries to the open arms in the (EPM) (p < 0.05). (RTqPCR) revealed that 30mg/kg of Salicylic acid increased (GAD67) gene expression (p < 0.001). Salicylic acid (30 and 300 mg/kg) also increased the duration of sleep, in ketamine induced sleeping test (p < 0.05). Our results showed that Salicylic acid has anxiolytic and hypnotic effects and it exerts its anxiolytic effect partly, via up regulation of (GAD67) in the ventral part of the hippocampus.

Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 78
Author(s):  
Melissa Bello-Perez ◽  
Mikolaj Adamek ◽  
Julio Coll ◽  
Antonio Figueras ◽  
Beatriz Novoa ◽  
...  

Recent studies suggest that short pentraxins in fish might serve as biomarkers for not only bacterial infections, as in higher vertebrates including humans, but also for viral ones. These fish orthologs of mammalian short pentraxins are currently attracting interest because of their newly discovered antiviral activity. In the present work, the modulation of the gene expression of all zebrafish short pentraxins (CRP-like proteins, CRP1-7) was extensively analyzed by quantitative polymerase chain reaction. Initially, the tissue distribution of crp1-7 transcripts and how the transcripts varied in response to a bath infection with the spring viremia of carp virus, were determined. The expression of crp1-7 was widely distributed and generally increased after infection (mostly at 5 days post infection), except for crp1 (downregulated). Interestingly, several crp transcription levels significantly increased in skin. Further assays in mutant zebrafish of recombinant activation gene 1 (rag1) showed that all crps (except for crp2, downregulated) were already constitutively highly expressed in skin from rag1 knockouts and only increased moderately after viral infection. Similar results were obtained for most mx isoforms (a reporter gene of the interferon response), suggesting a general overcompensation of the innate immunity in the absence of the adaptive one.


2007 ◽  
Vol 137 (1) ◽  
pp. 34-38 ◽  
Author(s):  
Bradford A. Woodworth ◽  
Rachel Wood ◽  
John E. Baatz ◽  
Rodney J. Schlosser

OBJECTIVE: To measure alterations in SPA1, A2, and D gene expression in various forms of inflammatory chronic rhinosinusitis (CRS). STUDY DESIGN AND SETTING: Sinus mucosal biopsies were performed in patients with allergic fungal rhinosinusitis (AFS), CRS with nasal polyposis, cystic fibrosis (CF), and controls. SP mRNA was measured with quantitative polymerase chain reaction. RESULTS: Patients with CF (n = 4) showed significantly increased SPA1 (82-fold), SPA2 (100-fold), and SPD (47-fold) mRNA ( P < 0.05) when compared with controls (n = 5). Patients with CRS with nasal polyposis (n = 5) also demonstrated elevated SPA1 (27-fold), SPA2 (13-fold), and SPD (13-fold). Patients with AFS (n = 7) had increased SPA1 (5-fold), SPA2 (9-fold), and SPD (17-fold), but were not statistically significant. CONCLUSION: SPA1, A2, and D are upregulated in various forms of CRS, but are significantly elevated in cystic fibrosis CRS. SIGNIFICANCE: Understanding the role of SPs in CRS will help develop novel treatment approaches for sinonasal pathoses.


2019 ◽  
Vol 10 (1) ◽  
pp. 168-174
Author(s):  
Trevor Humby ◽  
William Davies

Abstract Background Steroid sulfatase (STS) cleaves sulfate groups from steroid hormones; its expression/activity increases in late pregnancy and into the postpartum period. STS-deficient human and mouse mothers display elevated psychopathology and abnormal behaviour respectively; in mice, these effects can be partially normalised by antipsychotic (ziprasidone) administration. Methodology We compared brain gene expression in new mouse mothers administered the STS inhibitor 667-Coumate, or vehicle; significant changes were followed-up with pathway analysis and quantitative polymerase chain reaction (qPCR). Finally, the effects of combined 667-Coumate and ziprasidone administration on expression of the most robustly differentially-expressed genes were examined. Results Surprisingly, no between-group gene expression changes were detected at a False Discovery Rate (FDR)-corrected p<0.1. 1,081 unique expression changes were detected at p<0.05, two top hits were verified by qPCR, and pathway analysis indicated enrichment of genes involved in olfactory transduction. The expression of Stoml3 and Cyp2g1 was unaffected by ziprasidone administration. Conclusions Postpartum behavioural abnormalities in STS-deficient mothers are likely to be the culmination of many small gene expression changes. Our data are consistent with the idea that olfactory function is key to maternal behaviour in mice, and suggest that aberrant expression of olfactory system genes may underlie abnormal maternal behaviour in STS-deficient women.


Author(s):  
Michael B. Sayers ◽  
Tara M. Dalton

Real-time quantitative Polymerase Chain Reaction (PCR) is an extremely sensitive and reliable method for quantifying gene expression, allowing subtle shifts in gene expression to be easily monitored. Currently, stationary real-time PCR is readily achieved using fluorescent labels which increase in fluorescence as the DNA is exponentially amplified. Quantitative PCR is used in a myriad of applications. However currently most commercial real-time PCR devices are batch process stationary well based systems, limiting their throughput. Continuous flow microfluidic PCR devices have allowed for advancement in terms of improved PCR throughput and reduced reagent usage. As part of an overall total analysis system a device integrating all the functional steps of continuous flow realtime quantitative PCR has been designed and fabricated. Initially the PCR reaction mixture is segmented into nano-litre PCR reactors which are then thermally cycled on a two temperature fifty cycle flow-through PCR device, which allows laser induced fluorescent imaging of the nanoreactors. Previous studies into continuous flow PCR have demonstrated endpoint fluorescent measurements, however this research allows PCR nanoreactors to be fluorescently monitored after every PCR thermal cycle. Fluorescent optical monitoring is achieved through laser excitation of the nanoreactors while a Charged Coupled Device (CCD) camera is used to record the fluorescent emissions from the nanoreactors. Intensity analysis of the recorded images is then preformed using MATLAB to accurately determine the fluorescence intensity level, thereby allowing real-time quantitative amplification curves to be generated. This has major advantages over existing continuous flow PCR devices which use endpoint fluorescence and capillary electrophoresis, as the amplification curves allow far more information to be gleaned and allow the initial DNA template concentration to be accurately determined.


2017 ◽  
Vol 29 (10) ◽  
pp. 1971 ◽  
Author(s):  
Cassandra C. Yap ◽  
Peter J. Mark ◽  
Brendan J. Waddell ◽  
Jeremy T. Smith

Kisspeptin is crucial for the generation of the circadian-gated preovulatory gonadotrophin-releasing hormone (GnRH)–LH surge in female rodents, with expression in the anteroventral periventricular nucleus (AVPV) peaking in the late afternoon of pro-oestrus. Given kisspeptin expression is established before puberty, the aim of the present study was to investigate kisspeptin and clock gene rhythms during the neonatal period. Anterior and posterior hypothalami were collected from C57BL/6J mice on Postnatal Days (P) 5, 15 and 25, at six time points across 24 h, for analysis of gene expression by reverse transcription–quantitative polymerase chain reaction. Expression of aryl hydrocarbon receptor nuclear translocator-like gene (Bmal1) and nuclear receptor subfamily 1, group D, member 2 (Rev-erbα) in the anterior hypothalamus (containing the suprachiasmatic nucleus) was not rhythmic at P5 or P15, but Bmal1 expression exhibited rhythmicity in P25 females, whereas Rev-erbα expression was rhythmic in P25 males. KiSS-1 metastasis-suppressor (Kiss1) expression did not exhibit time-of-day variation in the anterior (containing the AVPV) or posterior (containing the arcuate nucleus) hypothalami in female and male mice at P5, P15 or P25. The data indicate that the kisspeptin circadian peak in expression observed in the AVPV of pro-oestrous females does not manifest at P5, P15 or P25, likely due to inadequate oestrogenic stimuli, as well as incomplete development of clock gene rhythmicity before puberty.


Sign in / Sign up

Export Citation Format

Share Document