scholarly journals Production of bioethanol from wheat straw via optimization of co-culture conditions of Bacillus licheniformis and Saccharomyces cerevisiae

Author(s):  
Shweta Sharma ◽  
Paras Kumar Jha ◽  
Amit Panwar

Abstract Bioethanol production has been a challenge for the researchers to enhance the bioethanol yield. In this study, we are reporting an efficient novel method to produce bioethanol. The process comprises co-culture technique to produce bioethanol from wheat straw by co-culturing Bacillus licheniformis and Saccharomyces cerevisiae. Simultaneous saccharification and fermentation allows wheat straw hydrolysis by cellulase enzyme produced by Bacillus licheniformis and conversion of produced reducing sugar into ethanol by Saccharomyces cerevisiae. Pre-treatment of wheat straw and optimization of co-culturing parameters like, time, pH, substrate concentrations and nitrogen source concentrations gave a net yield of 5.67% v/v bioethanol. Scale up of optimised media to fermenter has resulted in a significant enhancement of bioethanol production to 18.64% (v/v).

2020 ◽  
Vol 33 (4) ◽  
pp. 471-483
Author(s):  
Tugba Keskin

In this study, novel and conventional techniques for the production of bioethanol from fruit and vegetable wastes (FVWs) by yeast and bacterial fermentation were investigated experimentally. Different pretreatment techniques (acid, heat, acid/heat, and microwave) for yeast fermentation were compared. Maximum ethanol concentrations of 11.7 and 11.8 g L–1 were observed from acid/heat and microwave pretreatment, respectively, by using Saccharomyces cerevisiae. On the other hand, biochar production from FVWs and syngas fermentation from the waste gas of this process were integrated. From waste gas with 12 % CO content, 5.5 g L–1 and 2.5 g L–1 ethanol production was observed by using anaerobic mixed culture and Clostridium ljungdahlii, respectively. The overall results emphasize the potential of bioethanol production from FVWs by economically feasible and environmentally friendly methods.


2020 ◽  
pp. 103-110
Author(s):  
Larysa Sablii ◽  
Oleksandr Obodovych ◽  
Vitalii Sydorenko ◽  
Tamila Sheyko

This paper presents the results of studies of isolation lignin and hemicelluloses efficiency during the pre-treatment of wheat straw for hydrolysis in a rotary-pulsation apparatus. The pre-treatment of lignocellulosic raw materials for hydrolysis is a necessary step in the second-generation bioethanol production technology. The lignocellulose complex is destroyed during this process, and this allows hydrolytic enzymes access to the surface of cellulose fibers. The pre-treatment is the most energy-consuming stage in bioethanol production technology, since it usually occurs at high temperature and pressure for a significant time. One of the ways to improve the efficiency of this process is the use of energy-efficient equipment that allows intensifying heat and mass transfer. An example of such equipment is a rotary-pulsation apparatus, which are effective devices in stirring, homogenization, dispersion technologies, etc. The treatment of wheat straw in a rotary-pulsation apparatus was carried out under atmospheric pressure without external heat supply at solid/water ratios of 1:10 and 1:5 in the presence of alkali. It was determined that the treatment of the water dispersion of straw at ratio of 1:10 due to the energy dissipation during 70 minutes leads to the release of 42 % of lignin and 25.76 % of easily hydrolyzed polysaccharides. Changing the solid / water ratio from 1:10 to 1:5 leads to an increase in the yield of lignin and easily hydrolyzed polysaccharides to 58 and 33.38 %, respectively.


2009 ◽  
Vol 1219 ◽  
Author(s):  
Ken Tokuyasu

AbstractRice straw is among the most abundant herbaceous biomass, and regarded as the central feedstock for bioethanol production in Japan. We found that significant amounts of soft carbohydrates (SCs), defined as carbohydrates readily recoverable by mere extraction from the biomass or brief enzymatic saccharification, exist in rice straw in the form of free glucose, free fructose, sucrose, starch, and β-1,3-1,4-glucan. Based on the finding, we proposed a simple method for bioethanol production from rice straw samples with SCs, by a heat treatment for sterilization and starch gelatinization, followed by simultaneous saccharification/fermentation with Saccharomyces cerevisiae. This method would offer an efficient process for bioethanol production without the aid of harsh thermo/chemical pretreatment step.


Author(s):  
Thapelo Mokomele ◽  
Bianca Brandt ◽  
Johann Görgens

The pre-treatment of lignocellulose material toward cellulosic bioethanol production releases microbial inhibitors that severely limit the fermentation ability of Saccharomyces cerevisiae. This study evaluated to what degree robust xylose capable strains may improve the fermentability of non-detoxified sugarcane bagasse (SCB) slurries derived from steam explosion (StEX), and further compared this to slurries derived from ammonia fibre expansion (AFEX) pre-treatment. Initial screening in separate hydrolyses and co-fermentation processes using StEx-SCB hydrolysates identified S. cerevisiae TP-1 and CelluXTM4 with higher xylose consumption (≥ 88%) and ethanol concentrations (≥ 50 g/L). Subsequent fermentations compared StEx and AFEX pre-treated SCB material under industrially relevant fed-batch pre-hydrolysis simultaneous saccharification and co-fermentation (PSSCF) conditions, which resulted in only 3 g/L differences in ethanol titres for StEx and AFEX PSSCF fermentations. The study achieved non-detoxified whole-slurry co-fermentation using StEx pre-treated SCB, with higher ethanol yields than previously reported, by utilising robust xylose-capable strains.


Sign in / Sign up

Export Citation Format

Share Document