Na+/Ca2+ exchanger isoform 1 takes part to the Ca2+-related prosurvival pathway of SOD1 in primary motor neurons exposed to beta-methylamino-L-alanine

Author(s):  
Agnese Secondo ◽  
Tiziana Petrozziello ◽  
Francesca Boscia ◽  
Valentina Tedeschi ◽  
Anna Pannaccione ◽  
...  

Abstract Background: The cycad neurotoxin beta-methylamino-L-alanine (L-BMAA), causing the amyotrophic lateral sclerosis/Parkinson-dementia complex (ALS/PDC), may cause neurodegeneration by disrupting organellar Ca2+ homeostasis. By activating Akt/ERK1/2 pathway, the Cu,Zn-superoxide dismutase (SOD1) and its non-metallated form, ApoSOD1, prevent endoplasmic reticulum (ER) stress-induced cell death in motor neurons exposed to LBMAA. This occurs through the rapid increase of intracellular Ca2+ concentration ([Ca2+]i) in part flowing from the extracellular compartment and in part released from ER. However, the molecular components of this mechanism remain uncharacterized.Methods: By an integrated approach consisting on the use of siRNA strategy, Western blotting, confocal double labeling immunofluorescence, patch-clamp electrophysiology, and Fura 2- /SBFI-single-cell imaging, we explored in rat motor neuron-enriched cultures the involvement of plasma membrane Na+/Ca2+ exchanger (NCX) and the purinergic P2X7 receptor as well as of the intracellular cADP-ribose (cADPR) pathway in the rapid and neuroprotective mechanism of SOD1.Results: we showed that SOD1-induced [Ca2+]i rise was prevented by the pan inhibitor of NCX CB-DMB but not by A430879, a P2X7 receptor specific antagonist, or by 8-bromo-cADPR, a cell permeant antagonist of cADP-ribose. The same occurred for the ApoSOD1. Confocal double labeling immunofluorescence showed a huge expression of plasmalemmal NCX1 and intracellular NCX3 isoforms. Furthermore, we identified NCX1 reverse mode as the main mechanism responsible for the neuroprotective ER Ca2+ refilling elicited by SOD1 and ApoSOD1. Furthermore, SOD1 and ApoSOD1 promoted translocation of active Akt in some nuclei of primary motor neurons. Finally, the activation of NCX1 by the specific agonist CNPYB2 protected motor neurons from L-BMAA-induced cell death.Conclusion: collectively, our data indicate that SOD1 and ApoSOD1 exert their neuroprotective effect by modulating ER Ca2+ content through the activation of NCX1 reverse mode and Akt nuclear translocation in a subset of primary motor neurons.

2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Tiziana Petrozziello ◽  
Francesca Boscia ◽  
Valentina Tedeschi ◽  
Anna Pannaccione ◽  
Valeria de Rosa ◽  
...  

Abstract Background The cycad neurotoxin beta-methylamino-l-alanine (L-BMAA), one of the environmental trigger factor for amyotrophic lateral sclerosis/Parkinson-dementia complex (ALS/PDC), may cause neurodegeneration by disrupting organellar Ca2+ homeostasis. Through the activation of Akt/ERK1/2 pathway, the Cu,Zn-superoxide dismutase (SOD1) and its non-metallated form, ApoSOD1, prevent endoplasmic reticulum (ER) stress-induced cell death in motor neurons exposed to L-BMAA. This occurs through the rapid increase of intracellular Ca2+ concentration ([Ca2+]i) in part flowing from the extracellular compartment and in part released from ER. However, the molecular components of this mechanism remain uncharacterized. Methods By an integrated approach consisting on the use of siRNA strategy, Western blotting, confocal double- labeling immunofluorescence, patch-clamp electrophysiology, and Fura 2-/SBFI-single-cell imaging, we explored in rat motor neuron-enriched cultures the involvement of the plasma membrane proteins Na+/Ca2+ exchanger (NCX) and purinergic P2X7 receptor as well as that of the intracellular cADP-ribose (cADPR) pathway, in the neuroprotective mechanism of SOD1. Results We showed that SOD1-induced [Ca2+]i rise was prevented neither by A430879, a P2X7 receptor specific antagonist or 8-bromo-cADPR, a cell permeant antagonist of cADP-ribose, but only by the pan inhibitor of NCX, CB-DMB. The same occurred for the ApoSOD1. Confocal double labeling immunofluorescence showed a huge expression of plasmalemmal NCX1 and intracellular NCX3 isoforms. Furthermore, we identified NCX1 reverse mode as the main mechanism responsible for the neuroprotective ER Ca2+ refilling elicited by SOD1 and ApoSOD1 through which they promoted translocation of active Akt in the nuclei of a subset of primary motor neurons. Finally, the activation of NCX1 by the specific agonist CN-PYB2 protected motor neurons from L-BMAA-induced cell death, mimicking the effect of SOD1. Conclusion Collectively, our data indicate that SOD1 and ApoSOD1 exert their neuroprotective effect by modulating ER Ca2+ content through the activation of NCX1 reverse mode and Akt nuclear translocation in a subset of primary motor neurons.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Khalid N. M. Abdelazeem ◽  
M. Zaher Kalo ◽  
Sandra Beer-Hammer ◽  
Florian Lang

AbstractInflammation is a natural defense process of the innate immune system, associated with the release of proinflammatory cytokines such as interleukin-1β, interleukin-6, interleukin-12 and TNFα; and enzymes including iNOS through the activation and nuclear translocation of NF-κB p65 due to the phosphorylation of IκBα. Regulation of intracellular Ca2+ is considered a promising strategy for the prevention of reactive oxygen species (ROS) production and accumulation of DNA double strand breaks (DSBs) that occurs in inflammatory-associated-diseases. Among the metabolites of ellagitannins that are produced in the gut microbiome, urolithin A (UA) has received an increasing attention as a novel candidate with anti-inflammatory and anti-oxidant effects. Here, we investigated the effect of UA on the suppression of pro-inflammatory molecules and NF-κB activation by targeting TLR4 signalling pathway. We also identified the influence of UA on Ca2+ entry, ROS production and DSBs availability in murine bone-marrow-derived macrophages challenged with lipopolysaccharides (LPS). We found that UA inhibits IκBα phosphorylation and supresses MAPK and PI3K activation. In addition, UA was able to reduce calcium entry, ROS production and DSBs availability. In conclusion, we suggest that urolithin A is a promising therapeutic agent for treating inflammatory diseases through suppression of NF-κB and preserving DNA through maintaining intracellular calcium and ROS homeostasis.


2002 ◽  
Vol 282 (5) ◽  
pp. C1000-C1008 ◽  
Author(s):  
Kara L. Kopper ◽  
Joseph S. Adorante

In fura 2-loaded N1E-115 cells, regulation of intracellular Ca2+ concentration ([Ca2+]i) following a Ca2+ load induced by 1 μM thapsigargin and 10 μM carbonylcyanide p-trifluoromethyoxyphenylhydrazone (FCCP) was Na+ dependent and inhibited by 5 mM Ni2+. In cells with normal intracellular Na+ concentration ([Na+]i), removal of bath Na+, which should result in reversal of Na+/Ca2+exchange, did not increase [Ca2+]i unless cell Ca2+ buffer capacity was reduced. When N1E-115 cells were Na+ loaded using 100 μM veratridine and 4 μg/ml scorpion venom, the rate of the reverse mode of the Na+/Ca2+ exchanger was apparently enhanced, since an ∼4- to 6-fold increase in [Ca2+]ioccurred despite normal cell Ca2+ buffering. In SBFI-loaded cells, we were able to demonstrate forward operation of the Na+/Ca2+ exchanger (net efflux of Ca2+) by observing increases (∼ 6 mM) in [Na+]i. These Ni2+ (5 mM)-inhibited increases in [Na+]i could only be observed when a continuous ionomycin-induced influx of Ca2+ occurred. The voltage-sensitive dye bis-(1,3-diethylthiobarbituric acid) trimethine oxonol was used to measure changes in membrane potential. Ionomycin (1 μM) depolarized N1E-115 cells (∼25 mV). This depolarization was Na+dependent and blocked by 5 mM Ni2+ and 250–500 μM benzamil. These data provide evidence for the presence of an electrogenic Na+/Ca2+ exchanger that is capable of regulating [Ca2+]i after release of Ca2+ from cell stores.


2013 ◽  
Vol 2013 (9) ◽  
pp. pdb.prot073056 ◽  
Author(s):  
Don-On Daniel Mak ◽  
Horia Vais ◽  
King-Ho Cheung ◽  
J. Kevin Foskett

Pharmaceutics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 326 ◽  
Author(s):  
Nadia Ferlazzo ◽  
Santa Cirmi ◽  
Alessandro Maugeri ◽  
Caterina Russo ◽  
Giovanni Enrico Lombardo ◽  
...  

Much evidence suggests that both oxidative stress and apoptosis play a key role in the pathogenesis of Parkinson’s disease (PD). The present study aims to evaluate the protective effect of bergamot juice (BJ) against 6-hydroxydopamine (6-OHDA)- or H2O2-induced cell death. Treatment of differentiated SH-SY5Y human neuroblastoma cells with 6-OHDA or H2O2 resulted in cell death that was significantly reduced by the pre-treatment with BJ. The protective effects of BJ seem to correlate with the reduction of intracellular reactive oxygen species and nitric oxide generation caused by 6-OHDA or H2O2. BJ also attenuated mitochondrial dysfunction, caspase-3 activation, imbalance of pro- and anti-apoptotic proteins, MAPKs activation and reduced NF-ĸB nuclear translocation evoked by neurotoxic agents. Additionally, BJ exhibited excellent antioxidant capability in cell-free assays. Collectively, our results suggest that BJ exerts neuroprotective effect through the interplay with specific cell targets and its antioxidant activity, making it worthy of consideration for the management of neurodegenerative diseases.


1997 ◽  
Vol 186 (12) ◽  
pp. 2023-2031 ◽  
Author(s):  
Harald Neumann ◽  
Hannes Schmidt ◽  
Elke Wilharm ◽  
Lüder Behrens ◽  
Hartmut Wekerle

We explored expression and possible function of interferon-γ (IFN-γ) in cultured fetal (E15) rat dorsal root ganglion neurons combining whole cell patch-clamp electrophysiology with single cell reverse transcriptase polymerase chain reaction and confocal laser immunocytochemistry. Morphologically, we located IFN-γ protein in the cytoplasm of the neurons in culture as well as in situ during peri- and postnatal development. Transcripts for classic IFN-γ and for its receptor were determined in probes of cytoplasm sampled from individual cultured neurons, which had been identified by patch clamp electrophysiology. In addition, the cultured neurons expressed both chains of the IFN-γ receptor. Locally produced IFN-γ acts back on its cellular source. Phosphorylation and nuclear translocation of the IFN-inducible transcriptional factor STAT1 as well as IFN-γ–dependent expression of major histocompatibility complex class I molecules on the neuronal membrane were noted in untreated cultures. However, both processes were substantially blocked in the presence of antibodies neutralizing IFN-γ. Our findings indicate a role of IFN-γ in autocrine regulation of sensory neurons.


Author(s):  
Makoto Urushitani ◽  
Ryotaku Inoue ◽  
Tomoki Nakamizo ◽  
Hideyuki Sawada ◽  
Hiroshi Shibasaki ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Suting Li ◽  
Danhua Lu ◽  
Jianming Tang ◽  
Jie Min ◽  
Ming Hu ◽  
...  

Ca2+ is an important ion in response to electrical stimulation (ES) and acts as second messenger in the regulation of various physiological processes. Pelvic floor electrical stimulation (PES) is a low-voltage clinical application, available for urinary incontinence (UI) treatment. Fibroblasts, as the main cellular component of vaginal wall and pelvic ligament, play an important role in the maintenance of pelvic health. We studied the effect of ES on fibroblasts in this study. ES was conducted with electrotaxis chambers on L929 fibroblast and the ES parameter was 100 mV/mm×2h. The results showed that ES increased intracellular Ca2+ concentration, promoted the expression of PCNA, CyclinB1, and CyclinD1, and increased the proportion of cells in S and G2 phages. After ES, fibroblasts get activated and proliferated. Besides, BAPTA-AM, a membrane permeated chelator for intracellular free Ca2+, partially inhibited the effect of ES on fibroblasts activation and proliferation promotion. Furthermore, we elucidated that Ca2+, as a second messenger and upstream signal for Smads and Akt signaling, regulated ES-induced nuclear translocation of smad2/3, phosphorylation of smad2/3, Akt, and GSK3β. Finally, we validated the effect of ES on PES mouse model. The results indicated that PES promoted the activation and proliferation of fibroblasts in vivo. In conclusion, we verify that ES can elevate the concentration of intracellular Ca2+ and activate its downstream signaling and then promote the activation of fibroblasts, which may be one of the mechanisms of PES therapy.


1999 ◽  
Vol 277 (3) ◽  
pp. G678-G686 ◽  
Author(s):  
Yusuke Tando ◽  
Hana Algül ◽  
Martin Wagner ◽  
Hans Weidenbach ◽  
Guido Adler ◽  
...  

The eukaryotic transcription factor NF-κB/Rel is activated by a large variety of stimuli. We have recently shown that NF-κB/Rel is induced during the course of caerulein pancreatitis. Here, we show that activation of NF-κB/Rel by caerulein, a CCK analog, requires increasing intracellular Ca2+ levels and protein kinase C activation. Caerulein induces a dose-dependent increase of nuclear NF-κB/Rel binding activity in pancreatic lobules, which is paralleled by degradation of IκBα. IκBβ was only slightly affected by caerulein treatment. Consistent with an involvement of Ca2+, the endoplasmic reticulum-resident Ca2+-ATPase inhibitor thapsigargin activated NF-κB/Rel in pancreatic lobules. The intracellular Ca2+ chelator TMB-8 prevented IκBα degradation and subsequent nuclear translocation of NF-κB/Rel induced by caerulein. BAPTA-AM was less effective. Cyclosporin A, a Ca2+/calmodulin-dependent protein phosphatase (PP2B) inhibitor, decreased caerulein-induced NF-κB/Rel activation and IκBα degradation. The inhibitory effect of bisindolylmaleimide suggests that protein kinase C activity is also required for caerulein-induced NF-κB/Rel activation. These data suggest that Ca2+- as well as protein kinase C-dependent mechanisms are required for caerulein-induced NF-κB/Rel activation.


2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Qun Shan ◽  
Jun Lu ◽  
Yuanlin Zheng ◽  
Jing Li ◽  
Zhong Zhou ◽  
...  

Purple sweet potato color (PSPC), a naturally occurring anthocyanin, has a powerful antioxidant activity in vitro and in vivo. This study explores whether PSPC has the neuroprotective effect on the aging mouse brain induced by D-galactose (D-gal). The mice administrated with PSPC (100 mg/kg.day, 4 weeks, from 9th week) via oral gavage showed significantly improved behavior performance in the open field and passive avoidance test compared with D-gal-treated mice (500 mg/kg.day, 8 weeks). We further investigate the mechanism involved in neuroprotective effects of PSPC on mouse brain. Interestingly, we found, PSPC decreased the expression level of glial fibrillary acidic protein (GFAP), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), inhibited nuclear translocation of nuclear factor-kappaB (NF-κB), increased the activity of copper/zinc superoxide dismutase (Cu/Zn-SOD) and catalase (CAT), and reduced the content of malondialdehyde (MDA), respectively. Our data suggested that PSPC attenuated D-gal-induced cognitive impairment partly via enhancing the antioxidant and anti-inflammatory capacity.


Sign in / Sign up

Export Citation Format

Share Document