scholarly journals Neuroprotective Effect of Bergamot Juice in 6-OHDA-Induced SH-SY5Y Cell Death, an In Vitro Model of Parkinson’s Disease

Pharmaceutics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 326 ◽  
Author(s):  
Nadia Ferlazzo ◽  
Santa Cirmi ◽  
Alessandro Maugeri ◽  
Caterina Russo ◽  
Giovanni Enrico Lombardo ◽  
...  

Much evidence suggests that both oxidative stress and apoptosis play a key role in the pathogenesis of Parkinson’s disease (PD). The present study aims to evaluate the protective effect of bergamot juice (BJ) against 6-hydroxydopamine (6-OHDA)- or H2O2-induced cell death. Treatment of differentiated SH-SY5Y human neuroblastoma cells with 6-OHDA or H2O2 resulted in cell death that was significantly reduced by the pre-treatment with BJ. The protective effects of BJ seem to correlate with the reduction of intracellular reactive oxygen species and nitric oxide generation caused by 6-OHDA or H2O2. BJ also attenuated mitochondrial dysfunction, caspase-3 activation, imbalance of pro- and anti-apoptotic proteins, MAPKs activation and reduced NF-ĸB nuclear translocation evoked by neurotoxic agents. Additionally, BJ exhibited excellent antioxidant capability in cell-free assays. Collectively, our results suggest that BJ exerts neuroprotective effect through the interplay with specific cell targets and its antioxidant activity, making it worthy of consideration for the management of neurodegenerative diseases.

2017 ◽  
Vol 114 (6) ◽  
pp. E1009-E1017 ◽  
Author(s):  
Michele Perni ◽  
Céline Galvagnion ◽  
Alexander Maltsev ◽  
Georg Meisl ◽  
Martin B. D. Müller ◽  
...  

The self-assembly of α-synuclein is closely associated with Parkinson’s disease and related syndromes. We show that squalamine, a natural product with known anticancer and antiviral activity, dramatically affects α-synuclein aggregation in vitro and in vivo. We elucidate the mechanism of action of squalamine by investigating its interaction with lipid vesicles, which are known to stimulate nucleation, and find that this compound displaces α-synuclein from the surfaces of such vesicles, thereby blocking the first steps in its aggregation process. We also show that squalamine almost completely suppresses the toxicity of α-synuclein oligomers in human neuroblastoma cells by inhibiting their interactions with lipid membranes. We further examine the effects of squalamine in a Caenorhabditis elegans strain overexpressing α-synuclein, observing a dramatic reduction of α-synuclein aggregation and an almost complete elimination of muscle paralysis. These findings suggest that squalamine could be a means of therapeutic intervention in Parkinson’s disease and related conditions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258289
Author(s):  
Dzhirgala V. Shamadykova ◽  
Dmitry Y. Panteleev ◽  
Nadezhda N. Kust ◽  
Ekaterina A. Savchenko ◽  
Ekaterina Y. Rybalkina ◽  
...  

The glial cell line‐derived neurotrophic factor (GDNF) is involved in the survival of dopaminergic neurons. Besides, GDNF can also induce axonal growth and creation of new functional synapses. GDNF potential is promising for translation to treat diseases associated with neuronal death: neurodegenerative disorders, ischemic stroke, and cerebral or spinal cord damages. Unproductive clinical trials of GDNF for Parkinson’s disease treatment have induced to study this failure. A reason could be due to irrelevant producer cells that cannot perform the required post-translational modifications. The biological activity of recombinant mGDNF produced by E. coli have been compared with mGDNF produced by human cells HEK293. mGDNF variants were tested with PC12 cells, rat embryonic spinal ganglion cells, and SH-SY5Y human neuroblastoma cells in vitro as well as with a mouse model of the Parkinson’s disease in vivo. Both in vitro and in vivo the best neuro-inductive ability belongs to mGDNF produced by HEK293 cells. Keywords: GDNF, neural differentiation, bacterial and mammalian expression systems, cell cultures, model of Parkinson’s disease.


2019 ◽  
Author(s):  
Gourvendu Saxena ◽  
Utkarsh Khandelwal ◽  
Mukesh Doble

ABSTRACTDifferent types of α-synuclein and non-β-amyloid component (NAC) peptides have been shown to induce cell death, with varying degree of toxicity, in various in vitro experiments. Oxidative stress has also been associated and proved to be involved in the pathogenesis of neuronal cell death in Parkinson’s disease. Oxidative stress has been shown to accelerate the aggregation of α-synuclein in vitro and in resent studies α-synuclein has been shown to increase oxidative stress. Thus it seems like a vicious cycle, one promoting the other.In this present work we have modeled the α-synuclein pathway to increase cytoplasmic Dopamine concentration, and thereby increasing the Reactive Oxygen Species (ROS) level of the cell, which consequently results in cell death. This model relates the α-synuclein concentration with the fractional cell survival and provides insight of crucial reaction(s) of α-synuclein which promote cell death. It predicts the toxicity of the type of α-synuclein and also explains the pattern of cell death with increasing concentration of α-synuclein. First we modeled a part of the pathway i.e. from dopamine to cell death. The results were compared with experimental data available for PC12 neuronal cell line. Then modeling of full pathway was done and the results were compared with experimental data available for Human neuroblastoma SH-SY5Y cells. It is predicted from this model that higher the auto catalysis of dopamine, higher is the cell death. Interestingly, the model predicts that NAC (1-18) not only hinders the vesicles coming from Endoplasmic Reticulum, to fuse with Golgi bodies, but also reduces the synthesis of Dopamine and the formation of vesicles from Endoplasmic Reticulum. The model is generalized and can predict the toxicity of any protein which impedes the early secretary pathway in dopaminergic cells and also the cell survival pattern with increasing concentration of the protein.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Akiko Muroyama ◽  
Aya Fujita ◽  
Cheng Lv ◽  
Shota Kobayashi ◽  
Yoshiyasu Fukuyama ◽  
...  

The aim of this study is to investigate the role of magnolol in preventing 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP-) induced neurodegeneration in mice and 1-methyl-4-phenylpyridinium ion-(MPP+-) induced cytotoxicity to human neuroblastoma SH-SY5Y cells and to examine the possible mechanisms. Magnolol (30 mg/kg) was orally administered to C57BL/6N mice once a day for 4 or 5 days either before or after MPTP treatment. Western blot analysis revealed that MPTP injections substantially decreased protein levels of dopamine transporter (DAT) and tyrosine hydroxylase (TH) and increased glial fibrillary acidic protein (GFAP) levels in the striatum. Both treatments with magnolol significantly attenuated MPTP-induced decrease in DAT and TH protein levels in the striatum. However, these treatments did not affect MPTP-induced increase in GFAP levels. Moreover, oral administration of magnolol almost completely prevented MPTP-induced lipid peroxidation in the striatum. In human neuroblastoma SH-SY5Y cells, magnolol significantly attenuated MPP+-induced cytotoxicity and the production of reactive oxygen species. These results suggest that magnolol has protective effects via an antioxidative mechanism in bothin vivoandin vitromodels of Parkinson’s disease.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 361
Author(s):  
Gabriel Gonzalez ◽  
Jiří Grúz ◽  
Cosimo Walter D’Acunto ◽  
Petr Kaňovský ◽  
Miroslav Strnad

Cytokinins are adenine-based phytohormones that regulate key processes in plants, such as cell division and differentiation, root and shoot growth, apical dominance, branching, and seed germination. In preliminary studies, they have also shown protective activities against human neurodegenerative diseases. To extend knowledge of the protection (protective activity) they offer, we investigated activities of natural cytokinins against salsolinol (SAL)-induced toxicity (a Parkinson’s disease model) and glutamate (Glu)-induced death of neuron-like dopaminergic SH-SY5Y cells. We found that kinetin-3-glucoside, cis-zeatin riboside, and N6-isopentenyladenosine were active in the SAL-induced PD model. In addition, trans-, cis-zeatin, and kinetin along with the iron chelator deferoxamine (DFO) and the necroptosis inhibitor necrostatin 1 (NEC-1) significantly reduced cell death rates in the Glu-induced model. Lactate dehydrogenase assays revealed that the cytokinins provided lower neuroprotective activity than DFO and NEC-1. Moreover, they reduced apoptotic caspase-3/7 activities less strongly than DFO. However, the cytokinins had very similar effects to DFO and NEC-1 on superoxide radical production. Overall, they showed protective activity in the SAL-induced model of parkinsonian neuronal cell death and Glu-induced model of oxidative damage mainly by reduction of oxidative stress.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Renrong Wei ◽  
Cuiping Rong ◽  
Qingfeng Xie ◽  
Shouhai Wu ◽  
Yuchao Feng ◽  
...  

Parkinson’s disease (PD) is characterized by progressive degeneration of dopaminergic neurons in the substantia nigra (SN)-striatum circuit, which is associated with glial activation and consequent chronic neuroinflammation. Optimized Yinxieling Formula (OYF) is a Chinese medicine that exerts therapeutical effect and antiinflammation property on psoriasis. Our previous study has proven that pretreatment with OYF could regulate glia-mediated inflammation in an acute mouse model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Given that PD is a chronic degeneration disorder, this study applied another PD animal model induced by striatal injection of 6-hydroxydopamine (6-OHDA) to mimic the progressive damage of the SN-striatum dopamine system in rats. The OYF was administrated in the manner of pretreatment plus treatment. The effects of the OYF on motor behaviors were assessed with the apomorphine-induced rotation test and adjusting steps test. To confirm the effect of OYF on dopaminergic neurons and glia activation in this model, we analyzed the expression of tyrosine hydroxylase (TH) and glia markers, ionized calcium-binding adapter molecule 1 (Iba-1), and glial fibrillary acidic protein (GFAP) in the SN region of the rat PD model. Inflammation-associated factors, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), were further evaluated in this model and in interferon-γ- (INF-γ-) induced murine macrophages RAW264.7 cells. The results from the in vivo study showed that OYF reversed the motor behavioral dysfunction in 6-OHDA-induced PD rats, upregulated the TH expression, decreased the immunoreactivity of Iba-1 and GFAP, and downregulated the mRNA levels of TNF-α and COX-2. The OYF also trended to decrease the mRNA levels of IL-1β and iNOS in vivo. The results from the in vitro study showed that OYF significantly decreased the mRNA levels of TNF-α, IL-1β, IL-6, iNOS, and COX-2. Therefore, this study suggests that OYF exerts antiinflammatory effects, which might be related to the protection of dopaminergic neurons in 6-OHDA-induced chronic neurotoxicity.


2021 ◽  
Author(s):  
Sahabuddin Ahmed ◽  
Samir Ranjan Panda ◽  
Mohit Kwatra ◽  
Bidya Dhar Sahu ◽  
VGM Naidu

Abstract Several activators of NLRP3 inflammasome have been described; however, the central mechanisms of NLRP3 inflammasome activation in brain microglia, especially at the activating step through free radical generation, still require further clarification. Hence the present study aimed to investigate the role of free radicals in activating NLRP3 inflammasome driven neurodegeneration and elucidated the neuroprotective role of perillyl alcohol (PA) in vitro and in vivo models of Parkinson’s disease. Initial priming of microglial cells with lipopolysaccharide (LPS) following treatment with hydrogen peroxide (H2O2) induces NF-κB translocation to nucleus with robust generation of free radicals that act as Signal 2 in augmenting NLRP3 inflammasome assembly and its downstream targets. PA treatment suppresses nuclear translocation of NF-κB and maintains cellular redox homeostasis in microglia that limits NLRP3 inflammasome activation along with processing active caspase-1, IL-1β and IL-18. To further correlates the in vitro study with in vivo MPTP model, treatment with PA also inhibits the nuclear translocation of NF-κB and downregulates the NLRP3 inflammasome activation. PA administration upregulates various antioxidant enzymes levels and restored the level of dopamine and other neurotransmitters in the striatum of the mice brain with improved behavioural activities. Additionally, treatment with Mito-TEMPO (a mitochondrial ROS inhibitor) was also seen to inhibit NLRP3 inflammasome and rescue dopaminergic neuron loss in the mice brain. Therefore, we conclude that NLRP3 inflammasome activation requires a signal from damaged mitochondria for its activation. Further pharmacological scavenging of free radicals restricts microglia activation and simultaneously supports neuronal survival via targeting NLRP3 inflammasome pathway in Parkinson’s disease.


Sign in / Sign up

Export Citation Format

Share Document