scholarly journals MiR-204-5p/FOXC1/GDF7 Axis Regulates Osteogenic Differentiation of Human Adipose-Derived Stem Cells Via the AKT and p38 Signaling Pathways

2020 ◽  
Author(s):  
You Zhou ◽  
Siyu Liu ◽  
Wei Wang ◽  
Qiang Sun ◽  
Mengzhu Lv ◽  
...  

Abstract Background: Human adipose-derived stem cells (hADSCs) are stem cells with the potential to differentiate in multiple directions. MiR-204-5p is poorly expressed during osteogenic differentiation of hADSCs, and its specific regulatory mechanism remains unclear. Here, we aimed to explore the function and possible molecular mechanism of miR-204-5p involved in the osteogenic differentiation of hADSCs. Methods: The expression pattern of miR-204-5p, Runx2, Alkaline phosphatase (ALP), Osteocalcin (OCN), and Forkhead box C1(FOXC1) and growth differentiation factor 7(GDF7) in hADSCs during osteogenesis were detected by qRT-PCR. Then, ALP and alizarin red staining (ARS) were used to detect the activity of osteoblasts and mineral deposition. Western blot was conducted to confirm the protein levels. The regulation relationship among miR-204-5p, FOXC1 and GDF7 was verified by double luciferase activity and CHIP experiment.Results: First, miR-204-5p expression was down-regulated and overexpressed miR-204-5p suppressed the osteogenic differentiation. Furthermore, the levels of FOXC1 and GDF7 were decreased in the miR-204-5p mimics group, which indicate that overexpressed miR-204-5p would suppress the expression of FOXC1 and GDF7 through binding the 3’UTR region each. Overexpression of FOXC1 or GDF7 could improve the inhibition of osteogenic differentiation of hADSCs induced by the miR-204-5p mimics. Moreover, FOXC1 could bind to the promoter of miR-204-5p and GDF7, promote the deacetylation of miR-204-5p and reduced the expression of miR-204-5p, thus promoting the expression of GDF7 during osteogenic differentiation. GDF7 could induce hADSCs osteogenesis differentiation by activating the AKT and P38 signaling pathways. Conclusions: Our results demonstrated that miR-204-5p/FOXC1/GDF7 axis regulates osteogenic differentiation of hADSCs via the AKT and p38 signaling pathways. This study further understood the regulatory mechanism of hADSCs differentiation balance from the perspective of miRNAs regulation.

2020 ◽  
Author(s):  
You Zhou ◽  
Siyu Liu ◽  
Wei Wang ◽  
Qiang Sun ◽  
Mengzhu Lv ◽  
...  

Abstract Background: Human adipose-derived stem cells (hADSCs) are stem cells with the potential to differentiate in multiple directions. MiR-204-5p is expressed at low levels during the osteogenic differentiation of hADSCs, and its specific regulatory mechanism remains unclear. Here, we aimed to explore the function and possible molecular mechanism of miR-204-5p in the osteogenic differentiation of hADSCs.Methods: The expression patterns of miR-204-5p, Runx2, alkaline phosphatase (ALP), osteocalcin (OCN), forkhead box C1 (FOXC1) and growth differentiation factor 7 (GDF7) in hADSCs during osteogenesis were detected by qRT-PCR. Then, ALP and alizarin red staining (ARS) were used to detect osteoblast activities and mineral deposition. Western blotting was conducted to confirm the protein levels. The regulatory relationship among miR-204-5p, FOXC1 and GDF7 was verified by dual-luciferase activity and chromatin immunoprecipitation (ChIP) assays.Results: MiR-204-5p expression was downregulated in hADSC osteogenesis, and overexpression of miR-204-5p suppressed osteogenic differentiation. Furthermore, the levels of FOXC1 and GDF7 were decreased in the miR-204-5p mimics group, which indicates that miR-204-5p overexpression suppresses the expression of FOXC1 and GDF7 by binding to their 3'-untranslated regions (UTRs). Overexpression of FOXC1 or GDF7 improved the inhibition of osteogenic differentiation of hADSCs induced by the miR-204-5p mimics. Moreover, FOXC1 was found to bind to the promoter of miR-204-5p and GDF7, promote the deacetylation of miR-204-5p and reduce the expression of miR-204-5p, thus promoting the expression of GDF7 during osteogenic differentiation. GDF7 induced hADSC osteogenesis differentiation by activating the AKT and P38 signalling pathways.Conclusions: Our results demonstrated that the miR-204-5p/FOXC1/GDF7 axis regulates the osteogenic differentiation of hADSCs via the AKT and p38 signalling pathways. This study further revealed the regulatory mechanism of hADSC differentiation from the perspective of miRNA regulation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
You Zhou ◽  
Siyu Liu ◽  
Wei Wang ◽  
Qiang Sun ◽  
Mengzhu Lv ◽  
...  

Abstract Background Human adipose-derived stem cells (hADSCs) are stem cells with the potential to differentiate in multiple directions. miR-204-5p is expressed at low levels during the osteogenic differentiation of hADSCs, and its specific regulatory mechanism remains unclear. Here, we aimed to explore the function and possible molecular mechanism of miR-204-5p in the osteogenic differentiation of hADSCs. Methods The expression patterns of miR-204-5p, Runx2, alkaline phosphatase (ALP), osteocalcin (OCN), forkhead box C1 (FOXC1) and growth differentiation factor 7 (GDF7) in hADSCs during osteogenesis were detected by qRT-PCR. Then, ALP and alizarin red staining (ARS) were used to detect osteoblast activities and mineral deposition. Western blotting was conducted to confirm the protein levels. The regulatory relationship among miR-204-5p, FOXC1 and GDF7 was verified by dual-luciferase activity and chromatin immunoprecipitation (ChIP) assays. Results miR-204-5p expression was downregulated in hADSC osteogenesis, and overexpression of miR-204-5p suppressed osteogenic differentiation. Furthermore, the levels of FOXC1 and GDF7 were decreased in the miR-204-5p mimics group, which indicates that miR-204-5p overexpression suppresses the expression of FOXC1 and GDF7 by binding to their 3′-untranslated regions (UTRs). Overexpression of FOXC1 or GDF7 improved the inhibition of osteogenic differentiation of hADSCs induced by the miR-204-5p mimics. Moreover, FOXC1 was found to bind to the promoter of miR-204-5p and GDF7, promote the deacetylation of miR-204-5p and reduce the expression of miR-204-5p, thus promoting the expression of GDF7 during osteogenic differentiation. GDF7 induced hADSC osteogenesis differentiation by activating the AKT and P38 signalling pathways. Conclusions Our results demonstrated that the miR-204-5p/FOXC1/GDF7 axis regulates the osteogenic differentiation of hADSCs via the AKT and p38 signalling pathways. This study further revealed the regulatory mechanism of hADSC differentiation from the perspective of miRNA regulation.


2020 ◽  
Author(s):  
You Zhou ◽  
Siyu Liu ◽  
Wei Wang ◽  
Qiang Sun ◽  
Mengzhu Lv ◽  
...  

Abstract Background: Human adipose-derived stem cells (hADSCs) are stem cells with the potential to differentiate in multiple directions. MiR-204-5p is expressed at low levels during the osteogenic differentiation of hADSCs, and its specific regulatory mechanism remains unclear. Here, we aimed to explore the function and possible molecular mechanism of miR-204-5p in the osteogenic differentiation of hADSCs.Methods: The expression patterns of miR-204-5p, Runx2, alkaline phosphatase (ALP), osteocalcin (OCN), forkhead box C1 (FOXC1) and growth differentiation factor 7 (GDF7) in hADSCs during osteogenesis were detected by qRT-PCR. Then, ALP and alizarin red staining (ARS) were used to detect osteoblast activitie and mineral deposition. Western blotting was conducted to confirm the protein levels. The regulatory relationship among miR-204-5p, FOXC1 and GDF7 was verified by dual-luciferase activity and chromatin immunoprecipitation (ChIP) assays.Results: MiR-204-5p expression was downregulated in hADSC osteogenesis, and overexpression of miR-204-5p suppressed osteogenic differentiation. Furthermore, the levels of FOXC1 and GDF7 were decreased in the miR-204-5p mimics group, which indicates that miR-204-5p overexpression suppresses the expression of FOXC1 and GDF7 by binding to their 3'-untranslated regions (UTRs). Overexpression of FOXC1 or GDF7 improved the inhibition of osteogenic differentiation of hADSCs induced by the miR-204-5p mimics. Moreover, FOXC1 was found to bind to the promoter of miR-204-5p and GDF7, promote the deacetylation of miR-204-5p and reduce the expression of miR-204-5p, thus promoting the expression of GDF7 during osteogenic differentiation. GDF7 induced hADSC osteogenesis differentiation by activating the AKT and P38 signalling pathways.Conclusions: Our results demonstrated that the miR-204-5p/FOXC1/GDF7 axis regulates the osteogenic differentiation of hADSCs via the AKT and p38 signalling pathways. This study further revealed the regulatory mechanism of hADSC differentiation from the perspective of miRNA regulation.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Yicai Zhang ◽  
Yi Sun ◽  
Jinlong Liu ◽  
Yu Han ◽  
Jinglong Yan

The molecular mechanisms how bone marrow-derived mesenchymal stem cells (BMSCs) differentiate into osteoblast need to be investigated. MicroRNAs (miRNAs) contribute to the osteogenic differentiation of BMSCs. However, the effect of miR-346-5p on osteogenic differentiation of BMSCs is not clear. This study is aimed at elucidating the underlying mechanism by which miR-346-5p regulates osteogenic differentiation of human BMSCs. Results of alkaline phosphatase (ALP) and Alizarin Red S (ARS) staining indicated that upregulation of miR-346-5p suppressed osteogenic differentiation of BMSCs, whereas downregulation of miR-346-5p enhanced this process. The protein levels of the osteoblastic markers Osterix and Runt-related transcription factor 2 (Runx2) were decreased in cells treated with miR-346-5p mimic at day 7 and day 14 after being differentiated. By contrast, downregulation of miR-346-5p elevated the protein levels of Osterix and Runx2. Moreover, a dual-luciferase reporter assay revealed that Transmembrane Protein 9 (TMEM9) was a target of miR-346-5p. In addition, the Western Blot results demonstrated that the TMEM9 protein level was significantly reduced by the miR-346-5p mimic whereas downregulation of miR-346-5p improved the protein level of TMEM9. These results together demonstrated that miR-346-5p served a key role in BMSC osteogenic differentiation of through targeting TMEM9, which may provide a novel target for clinical treatments of bone injury.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Ping Zhang ◽  
Hao Zhang ◽  
Wenwu Dong ◽  
Zhihong Wang ◽  
Yuan Qin ◽  
...  

Background. The current treatment for postoperative hypoparathyroidism has shortcomings, such as repeated blood monitoring for dosage adjustment, uncertain long-term efficacy, and the high price of recombinant parathyroid hormone therapy. Adipose-derived stem cells can undergo adipogenic and osteogenic differentiation in vitro and are considered a novel source of parathyroid-like cells, but the idea lacks theoretical basis and feasibility. We aimed at establishing a protocol for differentiating adipose-derived stem cells into parathyroid-like cells for treating hypoparathyroidism. Materials/Methods. Adipose-derived stem cells were isolated and purified from the inguinal adipose tissue of Sprague Dawley rats. Adipogenic differentiation and osteogenic differentiation of the cells were identified by oil red O and alizarin red S staining, respectively. The adipose-derived stem cells were stimulated by sonic hedgehog (SHH) and activin A. The differentiation of the adipose-derived stem cells to parathyroid-like cells was confirmed by the detection of parathyroid hormone and the related parathyroid markers. Results. Adipose-derived stem cells were successfully isolated and purified from the rat adipocytes. The adipogenic and osteogenic differentiation capabilities of the adipose-derived stem cells were determined. SHH and activin A stimulated parathyroid hormone secretion by the adipose-derived stem cells and significantly increased the expression of calcium-sensing receptor (CaSR), parathyroid hormone, and glial cells missing homolog 2 (GCM2) in the cells in a time- and concentration-dependent manner. Conclusion. We successfully differentiated rat adipose-derived stem cells into parathyroid-like cells, which will pave a new route to curing hypoparathyroidism.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 902
Author(s):  
Madhumita Patel ◽  
Won-Gun Koh

Composite hydrogels with electrospun nanofibers (NFs) have recently been used to mimic the native extracellular matrix. In this study, composite hydrogels of methacrylated hyaluronic acid containing fragmented polycaprolactone NFs were used for bone tissue engineering. The composite (NF/hydrogel) was crosslinked under ultraviolet (UV) light. The incorporation of fragmented polycaprolactone NFs increased the compression modulus from 1762.5 to 3122.5 Pa. Subsequently, adipose-derived stem cells incorporated into the composite hydrogel exhibited a more stretched and elongated morphology and osteogenic differentiation in the absence of external factors. The mRNA expressions of osteogenic biomarkers, including collagen 1 (Col1), alkaline phosphatase, and runt-related transcription factor 2, were 3–5-fold higher in the composite hydrogel than in the hydrogel alone. In addition, results of the protein expression of Col1 and alizarin red staining confirmed osteogenic differentiation. These findings suggest that our composite hydrogel provides a suitable microenvironment for bone tissue engineering.


2020 ◽  
Author(s):  
Bing Sun ◽  
Xin Jiang ◽  
Rongmei Qu ◽  
Tingyu Fan ◽  
Yuchao Yang ◽  
...  

Abstract Background:Actin is an essential cellular protein that assembles into microfilaments and regulates numerous processes such as cell migration, maintenance of cell shape, and material transport. In this study, we explored the effect of actin polymerization state on the osteogenic differentiation of human adipose-derived stem cells (hASCs). Methods:The hASCs were treated with different concentrations (0, 1, 5, 10, 20, and 50 nM)of jasplakinolide (JAS), a reagent that directly polymerizes F-actin.The effects ofthe actin polymerization state on cell proliferation, apoptosis, migration, and the maturity of focal adhesion-related proteins were assessed. In addition, western blotting and alizarin red staining assays were performed to assess osteogenic differentiation. Results: These results revealed that cell proliferation and migration in the JAS (0, 1, 5, 10, and 20 nM) groupswashigher than that inthe control group andthe JAS (50 nM) group.The protein expressionof focal adhesion kinase, vinculin, paxillin, and talinwere highest in the JAS (20 nM) group, whilezyxin expression was highestinthe JAS (50 nM) group.Western blottingshowed thatosteogenic differentiation in theJAS (0, 1, 5, 10, 20, and 50 nM) groupswas enhanced compared with that in thecontrol group, and was strongest inthe JAS (50 nM) group.Conclusions: Our data suggest thatthe actinpolymerization state may promote the osteogenic differentiation of hASCs by regulating the protein expression of focal adhesion-associated proteins in a concentration-dependent manner. Our findings provide valuable information for exploring the mechanism of osteogenic differentiationin hASCs.


2021 ◽  
Author(s):  
Tianli Wu ◽  
Zhihao Yao ◽  
Gang Tao ◽  
Fangzhi Lou ◽  
Hui Tang ◽  
...  

Abstract Objective: Although it has been demonstrated that adipose-derived stem cells (ASCs) from osteoporosis mice (OP-ASCs) exhibit impaired osteogenic differentiation potential, the molecular mechanism has not yet been elucidated. We found that Fzd6 was decreased in OP-ASCs compared with ASCs. This study investigates the effects and underlying mechanisms of Fzd6 in the osteogenic potential of OP-ASCs. Methods: Fzd6 expression in ASCs and OP-ASCs was measured by PCR gene chip. Fzd6 overexpression and silencing lentiviruses were used to evaluate the role of Fzd6 in the osteogenic differentiation of OP-ASCs. Real-time PCR (qPCR) and western blotting (WB) was performed to detect the expression of Fzd6 and bone-related molecules, including runt-related transcription factor 2 (Runx2) and osteopontin (Opn). Alizarin red staining and Alkaline phosphatase (ALP) staining was performed following osteogenic induction. Microscopic CT (Micro-CT), hematoxylin and eosin staining (H&E) staining, and Masson staining were used to assess the role of Fzd6 in osteogenic differentiation of osteoporosis (OP) mice in vivo.Results: Expression of Fzd6 was decreased significantly in OP-ASCs. Fzd6 silencing down-regulated the osteogenic ability of OP-ASCs in vitro. Overexpression of Fzd6 rescued the impaired osteogenic capacity in OP-ASCs in vitro. We obtained similar results in vivo.Conclusions: Fzd6 plays an important role in regulating the osteogenic ability of OP-ASCs both in vivo and in vitro. Overexpression of Fzd6 associated with the Wnt signaling pathway promotes the osteogenic ability of OP-ASCs, which provides new insights for the prevention and treatment of OP.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wentian Sun ◽  
Yidan Song ◽  
Kai Xia ◽  
Liyuan Yu ◽  
Xinqi Huang ◽  
...  

Abstract Objectives Adipose-derived stem cells are frequently used for bone regeneration both in vitro and in vivo. N6-methyladenosine (m6A) is the most abundant post-transcriptional modification on eukaryotic RNAs and plays multifaceted roles in development and diseases. However, the regulatory mechanisms of m6A in osteogenic differentiation of human adipose-derived stem cells (hASCs) remain elusive. The present study aimed to build the transcriptome-wide m6A methylome during the osteogenic differentiation of hASCs. Materials and methods hASCs were harvested after being cultured in a basic or osteogenic medium for 7 days, and the osteogenic differentiation was validated by alkaline phosphatase (ALP) and Alizarin Red S staining, ALP activity assay, and qRT-PCR analysis of ALP, RUNX2, BGLAP, SPP1, SP7, and COL1A1 genes. The m6A level was colorimetrically measured, and the expression of m6A regulators was confirmed by qRT-PCR and western blot. Moreover, m6A MeRIP-seq and RNA-seq were performed to build the transcriptome and m6A methylome. Furthermore, bioinformatic analyses including volcano plots, Venn plots, clustering analysis, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, gene sets enrichment analysis, and protein-protein interaction analysis were conducted. Results In total, 1145 differentially methylated peaks, 2261 differentially expressed genes, and 671 differentially methylated and expressed genes (DMEGs) were identified. GO and KEGG pathway analyses conducted for these DMEGs revealed extensive and osteogenic biological functions. The “PI3K-Akt signaling pathway”; “MAPK signaling pathway”; “parathyroid hormone synthesis, secretion, and action”; and “p53 signaling pathway” were significantly enriched, and the DMEGs in these pathways were identified as m6A-specific key genes. A protein-protein interaction network based on DMEGs was built, and VEGFA, CD44, MMP2, HGF, and SPARC were speculated as the hub DMEGs. Conclusions The total m6A level was reduced with osteogenic differentiation of hASCs. The transcriptome-wide m6A methylome built in the present study indicated quite a few signaling pathways, and hub genes were influenced by m6A modification. Future studies based on these epigenetic clues could promote understanding of the mechanisms of osteogenic differentiation of hASCs.


Human Cell ◽  
2020 ◽  
Vol 34 (1) ◽  
pp. 14-27
Author(s):  
Cheng Long ◽  
Shiqiang Cen ◽  
Zhou Zhong ◽  
Chang Zhou ◽  
Gang Zhong

AbstractMesenchymal stem cells (MSCs) are a promising regenerative medicine. The roles of miRNAs in osteogenic differentiation of bone marrow MSCs (BM-MSCs) remained less reported. Forkhead Box O3 (FOXO3) and alkaline phosphatase (ALP) levels in the BM-MSCs were measured on 3, 7, and 14 days after osteogenic differentiation. After transfection of FOXO3 overexpression plasmids or siFOXO3 into BM-MSCs, factors related to osteogenic differentiation or cell autophagy were determined. Besides, 3-methyladenine or rapamycin, as well as miR-223-3p mimic or inhibitor were applied to further determine the effect of FOXO3 in BM-MSCs. FOXO3 and ALP levels were increased in a time-dependent manner with osteogenic differentiation, supported by Alizarin Red Staining. Furthermore, up-regulated FOXO3 increased levels of ALP and factors related to osteogenic differentiation by increasing levels of autophagy-related factors. FOXO3, targeted by miR-223-3p, reversed the effects of miR-223-3p on factors related to BM-MSC autophagy and osteogenic differentiation. Down-regulated miR-223-3p expression promoted osteogenic differentiation of BM-MSCs by enhancing autophagy via targeting FOXO3, suggesting the potential of miR-223-3p as a therapeutic target for enhancing bone functions.


Sign in / Sign up

Export Citation Format

Share Document