scholarly journals Transcriptome based identification and validation of heat stress transcription factors in wheat progenitor species Aegilops speltoides

Author(s):  
Sushmita Seni ◽  
Satinder Kaur ◽  
Palvi Malik ◽  
Inderjit Singh Yadav ◽  
Parul Sirohi ◽  
...  

Abstract Wheat, one of the major cereal crops worldwide, get adversely affected by rising global temperature. We have identified the diploid B genome progenitor of wheat, Aegilops speltoides (SS), as a potential donor for heat stress tolerance. Therefore, the objective of the present work was to study the total transcriptome profile of Ae. speltoides accession pau3809 and compare with that of tetraploid and hexaploid wheat cultivars PDW274 and PBW725, respectively. The comparative transcriptome was utilized to identify and validate heat stress transcription factors (HSFs), the key genes involved in imparting heat stress tolerance. Transcriptome analysis led to the identification of a total of 74K, 68K, and 76K genes in AS3809, PDW274, and PBW725, respectively. There was a high uniformity of GO profiles under the biological, molecular, and cellular functions across the three wheat transcriptomes, suggesting the conservation of gene function. Twelve HSFs with the highest FPKM value in the Ae. speltoides transcriptome data were selected and six of these HSFs namely HSFA3, HSFA5, HSFA9, HSFB2a, HSFC1b, and HSFB2b were validated with qRT PCR. These six HSFs were identified as an important component of thermotolerance in Ae. speltoides as evident from their comparative higher expression under heat stress.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sushmita Seni ◽  
Satinder Kaur ◽  
Palvi Malik ◽  
Inderjit Singh Yadav ◽  
Parul Sirohi ◽  
...  

AbstractWheat, one of the major cereal crops worldwide, get adversely affected by rising global temperature. We have identified the diploid B genome progenitor of wheat, Aegilops speltoides (SS), as a potential donor for heat stress tolerance. Therefore, the present work was planned to study the total transcriptome profile of heat stress-tolerant Ae. speltoides accession pau3809 (AS3809) and compare with that of tetraploid and hexaploid wheat cultivars PDW274 and PBW725, respectively. The comparative transcriptome was utilized to identify and validate heat stress transcription factors (HSFs), the key genes involved in imparting heat stress tolerance. Transcriptome analysis led to the identification of a total of 74 K, 68 K, and 76 K genes in AS3809, PDW274, and PBW725, respectively. There was a high uniformity of GO profiles under the biological, molecular, and cellular functions across the three wheat transcriptomes, suggesting the conservation of gene function. Twelve HSFs having the highest FPKM value were identified in the AS3809 transcriptome data, while six of these HSFs namely HSFA3, HSFA5, HSFA9, HSFB2a, HSFB2b, and HSFC1b, were validated with qRT PCR. These six HSFs were identified as an important component of thermotolerance in AS3809 as evident from their comparative higher expression under heat stress.


2021 ◽  
Author(s):  
Sombir Rao ◽  
Chandni Bansal ◽  
Celine Sorin ◽  
Martin Crespi ◽  
Saloni Mathur

AbstractHeat stress transcription factors (HSFs) and miRNAs regulate different stress and developmental networks in plants. Regulatory feedbacks are at the basis of these networks. Here, we report that plants improve their heat stress tolerance through HSF-mediated transcriptional regulation of MIR169 and post-transcriptional regulation of NF-YA transcription factors. We show that HSFs recognize tomato and Arabidopsis MIR169 promoters using yeast-one-hybrid/ChIP-qPCR. Silencing tomato HSFs using virus induced gene silencing (VIGS) reduced Sly-MIR169 levels and enhanced Sly-NF-YA9/A10 target expression. Further, Sly-NF-YA9/A10-VIGS knock-down tomato plants and Arabidopsis plants overexpressing At-MIR169d or At-nf-ya2 mutants showed a link with increased heat tolerance. In contrast, Arabidopsis plants overexpressing At-NF-YA2, or those expressing a non-cleavable At-NF-YA2 form (miR169d-resistant At-NF-YA2) as well as plants inhibited for At-miRNA169d regulation (miR169d mimic plants) were more sensitive to heat stress, highlighting NF-YA as negative regulator of heat tolerance. Furthermore, post-transcriptional cleavage of NF-YA by elevated miR169 levels resulted in alleviating the repression of heat stress effectors HSFA7a/b in tomato and Arabidopsis revealing a retroactive control of HSFs by the miR169:NF-YA node. Hence, a regulatory feedback loop involving HSFs, miR169s and NF-YAs plays a critical role in the regulation of heat stress response in tomato and Arabidopsis plants.


Author(s):  
Peter Poór ◽  
Kashif Nawaz ◽  
Ravi Gupta ◽  
Farha Ashfaque ◽  
M. Iqbal R. Khan

2021 ◽  
Vol 19 (1) ◽  
pp. 74-89
Author(s):  
Amandeep Kaur ◽  
Parveen Chhuneja ◽  
Puja Srivastava ◽  
Kuldeep Singh ◽  
Satinder Kaur

AbstractAddressing the impact of heat stress during flowering and grain filling is critical to sustaining wheat productivity to meet a steadily increasing demand from a rapidly growing world population. Crop wild progenitor species of wheat possess a wealth of genetic diversity for several biotic and abiotic stresses, and morphological traits and can serve as valuable donors. The transfer of useful variation from the diploid progenitor, Aegilops tauschii, to hexaploid wheat can be done through the generation of synthetic hexaploid wheat (SHW). The present study targeted the identification of potential primary SHWs to introduce new genetic variability for heat stress tolerance. Selected SHWs were screened for different yield-associated traits along with three advanced breeding lines and durum parents as checks for assessing terminal heat stress tolerance under timely and late sown conditions for two consecutive seasons. Heat tolerance index based on the number of productive tillers and thousand grain weight indicated that three synthetics, syn9809 (64.32, 78.80), syn14128 (50.30, 78.28) and syn14135 (58.16, 76.03), were able to endure terminal heat stress better than other SHWs as well as checks. One of these synthetics, syn14128, recorded a minimum reduction in thousand kernel weight (21%), chlorophyll content (2.56%), grain width (1.07%) despite minimum grain-filling duration (36.15 d) and has been selected as a potential candidate for introducing the terminal heat stress tolerance in wheat breeding programmes. Breeding efforts using these candidate donors will help develop lines with a higher potential to express the desired heat stress-tolerant phenotype under field conditions.


Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 474
Author(s):  
Palle Duun Rohde ◽  
Asbjørn Bøcker ◽  
Caroline Amalie Bastholm Jensen ◽  
Anne Louise Bergstrøm ◽  
Morten Ib Juul Madsen ◽  
...  

Rapamycin is a powerful inhibitor of the TOR (Target of Rapamycin) pathway, which is an evolutionarily conserved protein kinase, that plays a central role in plants and animals. Rapamycin is used globally as an immunosuppressant and as an anti-aging medicine. Despite widespread use, treatment efficiency varies considerably across patients, and little is known about potential side effects. Here we seek to investigate the effects of rapamycin by using Drosophila melanogaster as model system. Six isogenic D. melanogaster lines were assessed for their fecundity, male longevity and male heat stress tolerance with or without rapamycin treatment. The results showed increased longevity and heat stress tolerance for male flies treated with rapamycin. Conversely, the fecundity of rapamycin-exposed individuals was lower than for flies from the non-treated group, suggesting unwanted side effects of the drug in D. melanogaster. We found strong evidence for genotype-by-treatment interactions suggesting that a ‘one size fits all’ approach when it comes to treatment with rapamycin is not recommendable. The beneficial responses to rapamycin exposure for stress tolerance and longevity are in agreement with previous findings, however, the unexpected effects on reproduction are worrying and need further investigation and question common believes that rapamycin constitutes a harmless drug.


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 51
Author(s):  
So-Eun Kim ◽  
Chan-Ju Lee ◽  
Sul-U Park ◽  
Ye-Hoon Lim ◽  
Woo Sung Park ◽  
...  

Carotenoids function as photosynthetic accessory pigments, antioxidants, and vitamin A precursors. We recently showed that transgenic sweetpotato calli overexpressing the mutant sweetpotato (Ipomoea batatas [L.] Lam) Orange gene (IbOr-R96H), which carries a single nucleotide polymorphism responsible for Arg to His substitution at amino acid position 96, exhibited dramatically higher carotenoid content and abiotic stress tolerance than calli overexpressing the wild-type IbOr gene (IbOr-WT). In this study, we generated transgenic sweetpotato plants overexpressing IbOr-R96H under the control of the cauliflower mosaic virus (CaMV) 35S promoter via Agrobacterium-mediated transformation. The total carotenoid contents of IbOr-R96H storage roots (light-orange flesh) and IbOr-WT storage roots (light-yellow flesh) were 5.4–19.6 and 3.2-fold higher, respectively, than those of non-transgenic (NT) storage roots (white flesh). The β-carotene content of IbOr-R96H storage roots was up to 186.2-fold higher than that of NT storage roots. In addition, IbOr-R96H plants showed greater tolerance to heat stress (47 °C) than NT and IbOr-WT plants, possibly because of higher DPPH radical scavenging activity and ABA contents. These results indicate that IbOr-R96H is a promising strategy for developing new sweetpotato cultivars with improved carotenoid contents and heat stress tolerance.


1993 ◽  
Vol 102 (4) ◽  
pp. 1355-1356 ◽  
Author(s):  
K. D. Scharf ◽  
S. Rose ◽  
J. Thierfelder ◽  
L. Nover

2015 ◽  
Vol 56 (9) ◽  
pp. 1762-1772 ◽  
Author(s):  
Anh Hai Nguyen ◽  
Akihiro Matsui ◽  
Maho Tanaka ◽  
Kayoko Mizunashi ◽  
Kentaro Nakaminami ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document