scholarly journals Enhancing Monthly Lake Levels Forecasting Using Heuristic Regression Techniques with Periodicity Data Component: Application of Lake Michigan

Author(s):  
Vahdettin DEMIR

Abstract This paper investigates the accuracy of three different techniques with periodicity component for estimation of monthly lake levels. The compared methods are Least Square Support Vector Regression (LSSVR) Multivariate Adaptive Regression Splines (MARS) and M5 Model Tree (M5-Tree). Data from Lake Michigan, located in the USA, is used in the analysis. In the first stage of the study, three different techniques were applied to forecast monthly lake-levels variations up to 8- mount ahead of time intervals. In the second stage, the influence of the periodicity component was applied (month number of the year, e.g., 1, 2, 3, …12) as an external sub-set in modeling monthly lake levels. The Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and coefficient of determination (R2) were utilized are used for evaluating the accuracy of models. In both stages, the comparison results indicate that the MARS model generally performs superior to the LSSVR, and M5-Tree models. Furthermore, it has been discovered that including periodicity as an input to the models improves their accuracy in projecting monthly lake levels.

2017 ◽  
Vol 48 (6) ◽  
pp. 1489-1507 ◽  
Author(s):  
Birendra Bharti ◽  
Ashish Pandey ◽  
S. K. Tripathi ◽  
Dheeraj Kumar

Abstract In this study, the performance evaluation of five machine learning models, namely, ANNLM, ANNSCG, least square-support vector regression (LS-SVR), reduced error pruning tree (REPTree) and M5, was carried out for predicting runoff and sediment in the Pokhariya watershed, India using hydro-meteorological variables as input. The input variables were selected using the trial-and-error procedure which represents the hydrological process in the watershed. The seven input variables to all the models comprised a combination of rainfall, average temperature, relative humidity, pan evaporation, sunshine duration, solar radiation and wind speed. The monthly runoff and sediment yield data were used to calibrate and validate all models for the years 2000 to 2008. Evaluation of models' performances were carried out using four statistical indices, i.e., Nash–Sutcliffe coefficient (NSE), coefficient of determination (R2), percent bias (PBIAS) and RMSE-observations standard deviation ratio (RSR). Comparative analysis showed that the ANNLM model marginally outperformed the LS-SVR model and all the other models investigated during calibration and validation for runoff modelling whereas the LS-SVR model surpassed the artificial neural networks (ANN) model and other models for sediment yield modelling. Moreover, M5 model tree is better in simulating sediment yield and runoff than its near counterpart, the REPTree model, and marginally inferior when compared to LS-SVR and ANN models.


Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 547 ◽  
Author(s):  
Rana Muhammad Adnan ◽  
Zhihuan Chen ◽  
Xiaohui Yuan ◽  
Ozgur Kisi ◽  
Ahmed El-Shafie ◽  
...  

The study investigates the potential of two new machine learning methods, least-square support vector regression with a gravitational search algorithm (LSSVR-GSA) and the dynamic evolving neural-fuzzy inference system (DENFIS), for modeling reference evapotranspiration (ETo) using limited data. The results of the new methods are compared with the M5 model tree (M5RT) approach. Previous values of temperature data and extraterrestrial radiation information obtained from three stations, in China, are used as inputs to the models. The estimation exactness of the models is measured by three statistics: root mean square error, mean absolute error, and determination coefficient. According to the results, the temperature or extraterrestrial radiation-based LSSVR-GSA models perform superiorly to the DENFIS and M5RT models in terms of estimating monthly ETo. However, in some cases, a slight difference was found between the LSSVR-GSA and DENFIS methods. The results indicate that better prediction accuracy may be obtained using only extraterrestrial radiation information for all three methods. The prediction accuracy of the models is not generally improved by including periodicity information in the inputs. Using optimum air temperature and extraterrestrial radiation inputs together generally does not increase the accuracy of the applied methods in the estimation of monthly ETo.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 489
Author(s):  
Fadi Almohammed ◽  
Parveen Sihag ◽  
Saad Sh. Sammen ◽  
Krzysztof Adam Ostrowski ◽  
Karan Singh ◽  
...  

In this investigation, the potential of M5P, Random Tree (RT), Reduced Error Pruning Tree (REP Tree), Random Forest (RF), and Support Vector Regression (SVR) techniques have been evaluated and compared with the multiple linear regression-based model (MLR) to be used for prediction of the compressive strength of bacterial concrete. For this purpose, 128 experimental observations have been collected. The total data set has been divided into two segments such as training (87 observations) and testing (41 observations). The process of data set separation was arbitrary. Cement, Aggregate, Sand, Water to Cement Ratio, Curing time, Percentage of Bacteria, and type of sand were the input variables, whereas the compressive strength of bacterial concrete has been considered as the final target. Seven performance evaluation indices such as Correlation Coefficient (CC), Coefficient of determination (R2), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Bias, Nash-Sutcliffe Efficiency (NSE), and Scatter Index (SI) have been used to evaluate the performance of the developed models. Outcomes of performance evaluation indices recommend that the Polynomial kernel function based SVR model works better than other developed models with CC values as 0.9919, 0.9901, R2 values as 0.9839, 0.9803, NSE values as 0.9832, 0.9800, and lower values of RMSE are 1.5680, 1.9384, MAE is 0.7854, 1.5155, Bias are 0.2353, 0.1350 and SI are 0.0347, 0.0414 for training and testing stages, respectively. The sensitivity investigation shows that the curing time (T) is the vital input variable affecting the prediction of the compressive strength of bacterial concrete, using this data set.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 582 ◽  
Author(s):  
Sultan Noman Qasem ◽  
Saeed Samadianfard ◽  
Hamed Sadri Nahand ◽  
Amir Mosavi ◽  
Shahaboddin Shamshirband ◽  
...  

In the current study, the ability of three data-driven methods of Gene Expression Programming (GEP), M5 model tree (M5), and Support Vector Regression (SVR) were investigated in order to model and estimate the dew point temperature (DPT) at Tabriz station, Iran. For this purpose, meteorological parameters of daily average temperature (T), relative humidity (RH), actual vapor pressure (Vp), wind speed (W), and sunshine hours (S) were obtained from the meteorological organization of East Azerbaijan province, Iran for the period 1998 to 2016. Following this, the methods mentioned above were examined by defining 15 different input combinations of meteorological parameters. Additionally, root mean square error (RMSE) and the coefficient of determination (R2) were implemented to analyze the accuracy of the proposed methods. The results showed that the GEP-10 method, using three input parameters of T, RH, and S, with RMSE of 0.96°, the SVR-5, using two input parameters of T and RH, with RMSE of 0.44, and M5-15, using five input parameters of T, RH, Vp, W, and S with RMSE of 0.37 present better performance in the estimation of the DPT. As a conclusion, the M5-15 is recommended as the most precise model in the estimation of DPT in comparison with other considered models. As a conclusion, the obtained results proved the high capability of proposed M5 models in DPT estimation.


2015 ◽  
Vol 76 (13) ◽  
Author(s):  
Siraj Muhammed Pandhiani ◽  
Ani Shabri

In this study, new hybrid model is developed by integrating two models, the discrete wavelet transform and least square support vector machine (WLSSVM) model. The hybrid model is then used to measure for monthly stream flow forecasting for two major rivers in Pakistan. The monthly stream flow forecasting results are obtained by applying this model individually to forecast the rivers flow data of the Indus River and Neelum Rivers. The root mean square error (RMSE), mean absolute error (MAE) and the correlation (R) statistics are used for evaluating the accuracy of the WLSSVM, the proposed model. The results are compared with the results obtained through LSSVM. The outcome of such comparison shows that WLSSVM model is more accurate and efficient than LSSVM.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Mosbeh R. Kaloop ◽  
Jong Wan Hu ◽  
Emad Elbeltagi

One of the main driving factors for structures’ evaluation is the foundation settlement. Measuring structures’ settlement in field is costly especially when heavy loads are applied. Settlement prediction models can be used to avoid the high cost of settlement field tests. Four advanced heuristic regression methods are developed and applied in this study to estimate raft foundations’ settlement, namely, multivariate adaptive regression splines (MARS), M5 model tree (M5Tree), generalized regression neural networks (GRNN), and support vector regression (SVR) techniques. Simulation of raft pile foundations is utilized to calculate the settlements of piles under the effect of static and dynamic loads. Previous studies are compared with the newly developed models. The results show that the four models can be used to accurately predict foundations’ settlements in the training stage. Also, the results reveal that the MARS and SVR models performed slightly better than the M5Tree and GRNN models in the testing stage and accordingly can be used to predict foundations’ settlement. The SVR model outperformed other models when few numbers of measurements are available.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Hu Wang ◽  
Songqing Shan ◽  
G. Gary Wang ◽  
Guangyao Li

Many metamodeling techniques have been developed in the past two decades to reduce the computational cost of design evaluation. With the increasing scale and complexity of engineering problems, popular metamodeling techniques including artificial neural network (ANN), Polynomial regression (PR), Kriging (KG), radial basis functions (RBF), and multivariate adaptive regression splines (MARS) face difficulties in solving highly nonlinear problems, such as the crashworthiness design. Therefore, in this work, we integrate the least support vector regression (LSSVR) with the mode pursuing sampling (MPS) optimization method and applied the integrated approach for crashworthiness design. The MPS is used for generating new samples which are concentrated near the current local minima at each iteration and yet still statistically cover the entire design space. The LSSVR is used for establishing a more robust metamodel from noisy data. Therefore, the proposed method integrates the advantages of both the LSSVR and MPS to more efficiently achieve reasonably accurate results. In order to verify the proposed method, well-known highly nonlinear functions are used for testing. Finally, the proposed method is applied to three typical crashworthiness optimization cases. The results demonstrate the potential capability of this method in the crashworthiness design of vehicles.


Sign in / Sign up

Export Citation Format

Share Document