scholarly journals Estimating Daily Dew Point Temperature Using Machine Learning Algorithms

Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 582 ◽  
Author(s):  
Sultan Noman Qasem ◽  
Saeed Samadianfard ◽  
Hamed Sadri Nahand ◽  
Amir Mosavi ◽  
Shahaboddin Shamshirband ◽  
...  

In the current study, the ability of three data-driven methods of Gene Expression Programming (GEP), M5 model tree (M5), and Support Vector Regression (SVR) were investigated in order to model and estimate the dew point temperature (DPT) at Tabriz station, Iran. For this purpose, meteorological parameters of daily average temperature (T), relative humidity (RH), actual vapor pressure (Vp), wind speed (W), and sunshine hours (S) were obtained from the meteorological organization of East Azerbaijan province, Iran for the period 1998 to 2016. Following this, the methods mentioned above were examined by defining 15 different input combinations of meteorological parameters. Additionally, root mean square error (RMSE) and the coefficient of determination (R2) were implemented to analyze the accuracy of the proposed methods. The results showed that the GEP-10 method, using three input parameters of T, RH, and S, with RMSE of 0.96°, the SVR-5, using two input parameters of T and RH, with RMSE of 0.44, and M5-15, using five input parameters of T, RH, Vp, W, and S with RMSE of 0.37 present better performance in the estimation of the DPT. As a conclusion, the M5-15 is recommended as the most precise model in the estimation of DPT in comparison with other considered models. As a conclusion, the obtained results proved the high capability of proposed M5 models in DPT estimation.

Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2600
Author(s):  
Meysam Alizamir ◽  
Sungwon Kim ◽  
Mohammad Zounemat-Kermani ◽  
Salim Heddam ◽  
Nam Won Kim ◽  
...  

Accurate estimation of dew point temperature (Tdew) has a crucial role in sustainable water resource management. This study investigates kernel extreme learning machine (KELM), boosted regression tree (BRT), radial basis function neural network (RBFNN), multilayer perceptron neural network (MLPNN), and multivariate adaptive regression spline (MARS) models for daily dew point temperature estimation at Durham and UC Riverside stations in the United States. Daily time scale measured hydrometeorological data, including wind speed (WS), maximum air temperature (TMAX), minimum air temperature (TMIN), maximum relative humidity (RHMAX), minimum relative humidity (RHMIN), vapor pressure (VP), soil temperature (ST), solar radiation (SR), and dew point temperature (Tdew) were utilized to investigate the applied predictive models. Results of the KELM model were compared with other models using eight different input combinations with respect to root mean square error (RMSE), coefficient of determination (R2), and Nash–Sutcliffe efficiency (NSE) statistical indices. Results showed that the KELM models, using three input parameters, VP, TMAX, and RHMIN, with RMSE = 0.419 °C, NSE = 0.995, and R2 = 0.995 at Durham station, and seven input parameters, VP, ST, RHMAX, TMIN, RHMIN, TMAX, and WS, with RMSE = 0.485 °C, NSE = 0.994, and R2 = 0.994 at UC Riverside station, exhibited better performance in the modeling of daily Tdew. Finally, it was concluded from a comparison of the results that out of the five models applied, the KELM model was found to be the most robust by improving the performance of BRT, RBFNN, MLPNN, and MARS models in the testing phase at both stations.


2013 ◽  
Vol 45 (2) ◽  
pp. 165-181 ◽  
Author(s):  
Jalal Shiri ◽  
Sungwon Kim ◽  
Ozgur Kisi

The present study investigates the ability of two different artificial neural network (ANN) models and gene expression programming (GEP) technique for estimating daily dew point temperature by using recorded weather data. The weather data used consist of 8 years of daily records of air temperature, wind speed, relative humidity, atmospheric pressure, incoming solar radiation and dew point temperature from two weather stations (Seoul and Incheon, in the Republic of Korea). Two different data management scenarios are applied in this paper. In the first scenario, weather data obtained from each station are used to estimate Tdew at the same station (at-station approach). In the second scenario, the ANN and GEP models are used for estimating dew point temperature of each station by using the data of the other station (cross-station application), through the optimal input combinations of the first scenario. Comparison of the results reveals that the GEP model surpasses ANN in estimating daily dew point temperature values.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 742 ◽  
Author(s):  
Sujay Naganna ◽  
Paresh Deka ◽  
Mohammad Ghorbani ◽  
Seyed Biazar ◽  
Nadhir Al-Ansari ◽  
...  

Dew point temperature (DPT) is known to fluctuate in space and time regardless of the climatic zone considered. The accurate estimation of the DPT is highly significant for various applications of hydro and agro–climatological researches. The current research investigated the hybridization of a multilayer perceptron (MLP) neural network with nature-inspired optimization algorithms (i.e., gravitational search (GSA) and firefly (FFA)) to model the DPT of two climatically contrasted (humid and semi-arid) regions in India. Daily time scale measured weather information, such as wet bulb temperature (WBT), vapor pressure (VP), relative humidity (RH), and dew point temperature, was used to build the proposed predictive models. The efficiencies of the proposed hybrid MLP networks (MLP–FFA and MLP–GSA) were authenticated against standard MLP tuned by a Levenberg–Marquardt back-propagation algorithm, extreme learning machine (ELM), and support vector machine (SVM) models. Statistical evaluation metrics such as Nash Sutcliffe efficiency (NSE), root mean square error (RMSE), and mean absolute error (MAE) were used to validate the model efficiency. The proposed hybrid MLP models exhibited excellent estimation accuracy. The hybridization of MLP with nature-inspired optimization algorithms boosted the estimation accuracy that is clearly owing to the tuning robustness. In general, the applied methodology showed very convincing results for both inspected climate zones.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4068
Author(s):  
Xu Huang ◽  
Mirna Wasouf ◽  
Jessada Sresakoolchai ◽  
Sakdirat Kaewunruen

Cracks typically develop in concrete due to shrinkage, loading actions, and weather conditions; and may occur anytime in its life span. Autogenous healing concrete is a type of self-healing concrete that can automatically heal cracks based on physical or chemical reactions in concrete matrix. It is imperative to investigate the healing performance that autogenous healing concrete possesses, to assess the extent of the cracking and to predict the extent of healing. In the research of self-healing concrete, testing the healing performance of concrete in a laboratory is costly, and a mass of instances may be needed to explore reliable concrete design. This study is thus the world’s first to establish six types of machine learning algorithms, which are capable of predicting the healing performance (HP) of self-healing concrete. These algorithms involve an artificial neural network (ANN), a k-nearest neighbours (kNN), a gradient boosting regression (GBR), a decision tree regression (DTR), a support vector regression (SVR) and a random forest (RF). Parameters of these algorithms are tuned utilising grid search algorithm (GSA) and genetic algorithm (GA). The prediction performance indicated by coefficient of determination (R2) and root mean square error (RMSE) measures of these algorithms are evaluated on the basis of 1417 data sets from the open literature. The results show that GSA-GBR performs higher prediction performance (R2GSA-GBR = 0.958) and stronger robustness (RMSEGSA-GBR = 0.202) than the other five types of algorithms employed to predict the healing performance of autogenous healing concrete. Therefore, reliable prediction accuracy of the healing performance and efficient assistance on the design of autogenous healing concrete can be achieved.


2021 ◽  
Vol 338 ◽  
pp. 01027
Author(s):  
Jan Taler ◽  
Bartosz Jagieła ◽  
Magdalena Jaremkiewicz

Cooling towers, or so-called evaporation towers, use the natural effect of water evaporation to dissipate heat in industrial and comfort installations. Water, until it changes its state of aggregation, from liquid to gas, consumes energy (2.257 kJ/kg). By consuming this energy, it lowers the air temperature to the wet-bulb temperature, thanks to which the medium can be cooled below the ambient temperature. Evaporative solutions are characterized by continuous water evaporation (approx. 1.5% of the total water flow) and low electricity consumption (high EER). Evaporative (adiabatic) cooling also has a positive effect on the reduction of electricity consumption of cooled machines. Lowering the relative humidity (RH) by approx. 2% lowers the wet-bulb temperature by approx. 0.5°C, which increases the efficiency of the tower, operating in an open circuit, expressed in kW, by approx. 5%, while reducing water consumption and treatment costs. The use of the M-Cycle (Maisotsenko cycle) to lower the temperature of the wet thermometer to the dew point temperature will reduce operating costs and increase the efficiency of cooled machines.


Sign in / Sign up

Export Citation Format

Share Document