Morphology And Status Transition Monitoring For Mouse Embryonic Stem Cell Colonies In Virto By LSTM Networks With Progressive Training Using Fluorescence Microscopy Images

Author(s):  
Slo-Li Chu ◽  
Kuniya Abe ◽  
Hideo Yokota ◽  
Ming-Dar Tsai

Abstract Purpose Embryonic stem (ES) cells represent as a cellular resource for basic biological studies and for their uses as medically relevant cells in in vitro studies. Fluorescence microscopy images taken during cell culture are frequently used to manually monitor time-series morphology changes and status transitions of ES cell (ESC) colonies, and to study dynamical pattern formation and heterogeneity distribution within ESC colonies, intrinsic fluctuation and cell-cell cooperativity. Therefore, tracking and furthermore predicting morphology changes and status transitions of ESC colonies is an effective method to monitor culture medium for maintaining ES cells in undifferentiated or early differentiated stage. Methods A P-LSTM (Progressive Long Short-Term Memory) structure is proposed to incorporate some new time-lapse images real-time taken from incubators for a new RNN (Recurrent Neural Networks) training. The P-LSTM can achieve adaptive long- and short- term memories to generate accurate predicted images. On the time-lapse images, entropy and bi-lateral filtering are used to extract the range of every colony to calculate colony morphology. Colony status transitions between consecutive images are calculated by mapping the calculated colony centers and ranges. Results Accuracies for the colony status transition, area and roundness for the 15 predicted (five-hour) future frames calculated from 1500-2500 colonies for respective frames show the effectiveness of the proposed method.Conclusion We proposed an efficient and automatic method to predict and monitor status transitions and morphology changes of mouse ESC colonies in culture using time-lapse fluorescence microscopy images.

2019 ◽  
Vol 317 (4) ◽  
pp. C725-C736
Author(s):  
Gurbind Singh ◽  
Divya Sridharan ◽  
Mahmood Khan ◽  
Polani B. Seshagiri

We earlier established the mouse embryonic stem (ES) cell “GS-2” line expressing enhanced green fluorescent protein (EGFP) and have been routinely using it to understand the molecular regulation of differentiation into cardiomyocytes. During such studies, we made a serendipitous discovery that functional cardiomyocytes derived from ES cells stopped beating when exposed to blue light. We observed a gradual cessation of contractility within a few minutes, regardless of wavelength (nm) ranges tested: blue (~420–495), green (~510–575), and red (~600–700), with green light manifesting the strongest impact. Following shifting of cultures back into the incubator (darkness), cardiac clusters regained beatings within a few hours. The observed light-induced contractility-inhibition effect was intrinsic to cardiomyocytes and not due to interference from other cell types. Also, this was not influenced by any physicochemical parameters or intracellular EGFP expression. Interestingly, the light-induced cardiomyocyte contractility inhibition was accompanied by increased intracellular reactive oxygen species (ROS), which could be abolished in the presence of N-acetylcysteine (ROS quencher). Besides, the increased intracardiomyocyte ROS levels were incidental to the inhibition of calcium transients and suppression of mitochondrial activity, both being essential for sarcomere function. To the best of our knowledge, ours is the first report to demonstrate the monochromatic light-mediated inhibition of contractions of cardiomyocytes with no apparent loss of cell viability and contractility. Our findings have implications in cardiac cell biology context in terms of 1) mechanistic insights into light impact on cardiomyocyte contraction, 2) potential use in laser beam-guided (cardiac) microsurgery, photo-optics-dependent medical diagnostics, 3) transient cessation of hearts during coronary artery bypass grafting, and 4) functional preservation of hearts for transplantation.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Stefanie Schmitteckert ◽  
Cornelia Ziegler ◽  
Liane Kartes ◽  
Alexandra Rolletschek

Transcription factor Lbx1 is known to play a role in the migration of muscle progenitor cells in limb buds and also in neuronal determination processes. In addition, involvement of Lbx1 in cardiac neural crest-related cardiogenesis was postulated. Here, we used mouse embryonic stem (ES) cells which have the capacity to develop into cells of all three primary germ layers. Duringin vitrodifferentiation, ES cells recapitulate cellular developmental processes and gene expression patterns of early embryogenesis. Transcript analysis revealed a significant upregulation ofLbx1at the progenitor cell stage. Immunofluorescence staining confirmed the expression of Lbx1 in skeletal muscle cell progenitors and GABAergic neurons. To verify the presence of Lbx1 in cardiac cells, triple immunocytochemistry of ES cell-derived cardiomyocytes and a quantification assay were performed at different developmental stages. Colabeling of Lbx1 and cardiac specific markers troponin T, α-actinin, GATA4, and Nkx2.5 suggested a potential role in early myocardial development.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2785-2785
Author(s):  
Brian T. Zafonte ◽  
Tara L. Huber ◽  
Gordon Keller ◽  
Todd Evans

Abstract Bone morphogenetic proteins (BMPs) comprise a sub-family of TGF-beta-like molecules that exert a wide range of biological activities during development, and are essential for normal hematopoiesis. However, the precise stage in development that BMP signaling regulates hematopoiesis is not defined. Three proteins, Smad1, Smad5, and Smad8 transmit BMP signals to the nucleus to activate the expression of hematopoietic-specific transcription factors. These Smads are homologous in their sequences, and appear to be regulated similarly, however their specificity in regulating hematopoiesis remains undefined. Although Smad proteins are regulated post-translationally, their expression is also under transcriptional control during development. We examined the specificity of Smad1/5/8 activity in the context of primitive erythropoiesis, using the mouse embryonic stem cell /embryoid body (ES/EB) system. We exploited ES cells with GFP targeted to the brachyury locus, in order to identify specific sub-sets of progenitors. Smad1 transcript levels are initially upregulated as ES cells become fated to mesoderm and hematopoietic progenitors, but the levels are significantly decreased in cells derived from differentiating primitive erythroid colonies. In contrast, Smad5 transcript levels show the opposite profile, being more correlated with erythroid differentiation. To directly assess the role of these Smads during erythropoiesis, their activity is being manipulated in ES cells during the commitment phases of embryonic hematopoiesis. For this purpose, inducible ES cell lines were generated capable of forcing the expression of wildtype Smad1 or Smad5, or a dominant-negative isoform of Smad5, at any stage of ES/EB development. Colony assays were used to analyze quantitatively the hematopoietic potential of these cells. Forced expression of Smad1 results in a marked increase in primitive red blood cell colony formation as compared to control ES cells. Maintenance of Smad1 expression does not appear to inhibit terminal differentiation. Based on a time-study of the induction, the effect on erythoid colonies could be due to expansion of earlier progenitors. Current experiments using the in vitro blast assay are examining the direct effect of Smad1 expression on earlier (hemangioblast) development. This data, and analogous analyses of cells induced to express Smad5 or the dominant-negative Smad isoform are in progress and will be presented. These studies should facilitate our understanding of the specificity of BMP-regulated Smads during commitment and differentiation of embryonic stem cells and hematopoietic progenitors.


2021 ◽  
pp. 15-41
Author(s):  
Hanyi Yu ◽  
Sung Bo Yoon ◽  
Robert Kauffman ◽  
Jens Wrammert ◽  
Adam Marcus ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 5267-5267
Author(s):  
Zwi N. Berneman ◽  
Jeremy P. Brown ◽  
Sjaak Van der Sar ◽  
Dave Van den Plas ◽  
Lena Van den Eeden ◽  
...  

Abstract BACKGROUND: Development of efficient non-viral gene transfer technologies for embryonic stem (ES) cells is urgently needed for various existing and new ES cell-based research strategies. In this study we investigated mRNA electroporation as a tool for short-term gene transfer in both mouse and human ES cells. METHODS: Culture and mRNA electroporation conditions for feeder-free cultured mouse and human ES cells were optimized on three mouse ES cell lines (E14, R1 and HM-1) and one human ES cell line (H9). After electroporation with EGFP mRNA, transfected ES cell populations were analyzed by FACS for EGFP expression, viability and phenotype. Also, stably-transfected mouse ES cell lines containing Lox-P or FRT-flanked reporter genes were electroporated with mRNA encoding Cre- or FLPe-recombinase proteins. Monitoring recombination efficiency was done based on the appearance and/or disappearance of fluorescent reporter genes, as determined by FACS analysis. ES cells that underwent recombination were further analyzed for potential to differentiate towards the neural lineage and differentiated cells were analyzed by FACS for expression of neural markers. RESULTS: (A) Electroporation of EGFP mRNA in mouse ES cells resulted in high level transgene expression (>90% EGFP positive cells) combined with low electroporation-induced cell mortality (>90% viable cells). Moreover, the electroporation procedure did not influence ES cell phenotype and further cell culture of undifferentiated ES cell populations. Electroporation of mRNA encoding Cre- or FLPe-recombinase proteins in stably-transfected mouse ES cell lines containing LoxP- or FRT-flanked reporter genes resulted in a recombination efficiency of respectively 75% and 90%. Moreover, these recombination events did not have influence on ES cell phenotype, viability, growth potential, and their ability to differentiate towards neural cell types upon retinoic acid stimulation. (B) Although human ES cells are much more sensitive as compared to mouse ES cells, we were able to develop improved culture and electroporation conditions for feeder-free maintained H9 human ES cells, which resulted in high level transgene expression (>90% EGFP+ cells) combined with high cell viability (>90% viable cells) after EGFP mRNA electroporation. CONCLUSIONS: RNA electroporation is a highly efficient method for short-term genetic loading of both mouse and human ES cells. Ongoing research now focuses on either short-term (via direct mRNA electroporation) or sustained (via mRNA-based FLPe-recombination) expression of transcription factors in ES cells and their influence on cell-fate within in vitro cultured embryoid bodies.


Sign in / Sign up

Export Citation Format

Share Document