scholarly journals Assessment of technical and environmental performance of Marine Alternative fuels for Container Ships

Author(s):  
Ahmed G. Elkafas ◽  
Mohamed R. Shouman

Abstract Environmental issues, for example, the expanded air pollutant emissions from ships are progressively affecting the operation of ships. Therefore, International Maritime Organization (IMO) has adopted many goals to decarbonizing the shipping industry by at least 40% by 2030. Marine fuels play a major role in these goals because of the emissions resulting from the combustion process. Therefore, the present research proposes to convert the conventional engine operated by marine diesel oil (MDO) to a dual-fuel engine operated by either natural gas (NG) or methanol. As a case study, A15-class container ship is investigated. The results showed that the dual-fuel engine operated with (98.5% NG and 1.5% MDO) will reduce CO2, SOx, and NOx emissions by 28%, 98% and 85%, respectively when compared with their values for conventional diesel engine. On the other hand, the reduction percentages reach to 7%, 95% and 80% when using a dual-fuel engine operated with (95% Methanol and 5% MDO), respectively. The proposed dual-fuel engines operated by either NG and methanol will improve the ship energy efficiency index by 26% and 7%, respectively.

Transport ◽  
2015 ◽  
Vol 30 (2) ◽  
pp. 162-171 ◽  
Author(s):  
Maciej Mikulski ◽  
Sławomir Wierzbicki

Currently, one of the major trends in the research of contemporary combustion engines involves the potential use of alternative fuels. Considerable attention has been devoted to methane, which is the main component of Natural Gas (NG) and can also be obtained by purification of biogas. In compression-ignition engines fired with methane or Compressed Natural Gas (CNG), it is necessary to apply a dual-fuel feeding system. This paper presents the effect of the proportion of CNG in a fuel dose on the process of combustion. The recorded time series of pressure in a combustion chamber was used to determine the repeatability of the combustion process and the change of fuel compression-ignition delay in the combustion chamber. It has been showed that NG does not burn completely in a dual-fuel engine. The best conditions for combustion are ensured with higher concentrations of gaseous fuel. NG ignition does not take place simultaneously with diesel oil ignition. Moreover, if a divided dose of diesel is injected, NG ignition probably takes place at two points, as diesel oil.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4307
Author(s):  
Roberta De Robbio ◽  
Maria Cristina Cameretti ◽  
Ezio Mancaruso ◽  
Raffaele Tuccillo ◽  
Bianca Maria Vaglieco

Dual fuel engines induce benefits in terms of pollutant emissions of PM and NOx together with carbon dioxide reduction and being powered by natural gas (mainly methane) characterized by a low C/H ratio. Therefore, using natural gas (NG) in diesel engines can be a viable solution to reevaluate this type of engine and to prevent its disappearance from the automotive market, as it is a well-established technology in both energy and transportation fields. It is characterized by high performance and reliability. Nevertheless, further improvements are needed in terms of the optimization of combustion development, a more efficient oxidation, and a more efficient exploitation of gaseous fuel energy. To this aim, in this work, a CFD numerical methodology is described to simulate the processes that characterize combustion in a light-duty diesel engine in dual fuel mode by analyzing the effects of the changes in engine speed on the interaction between fluid-dynamics and chemistry as well as when the diesel/natural gas ratio changes at constant injected diesel amount. With the aid of experimental data obtained at the engine test bench on an optically accessible research engine, models of a 3D code, i.e., KIVA-3V, were validated. The ability to view images of OH distribution inside the cylinder allowed us to better model the complex combustion phenomenon of two fuels with very different burning characteristics. The numerical results also defined the importance of this free radical that characterizes the areas with the greatest combustion activity.


2019 ◽  
Vol 112 ◽  
pp. 01014
Author(s):  
Adrian Nicolici ◽  
Constantin Pană ◽  
Niculae Negurescu ◽  
Alexandru Cernat ◽  
Cristian Nuţu

The progressive diminution of the oil reserves all over the world highlights the necessity of using alternative fuels derived from durable renewable resource. The use of the alternative fuels represents a viable solution to reduce the pollutant emissions and to replace fossil fuels. Thus, a viable solution is the use of the animal fats in mixture with the diesel fuel at the diesel engines. A D2156 MTN8 diesel engine was firstly fuelled with diesel fuel and then with different blends of diesel fuel-animal fats (5% and 10% animal fats content). In the paper are presented some results of the experimental investigations of engine fuelled with preheated animal fats. The raw animal fats effects on the combustion process and on the pollutant emissions at different engine loads and 1450 rev/min engine speed are showed. The engine cycle variability increases at the animal fats content increase. The cycle variability for maximum pressure, maximum pressure angle and indicated mean effective pressure is analysed. The cycle variability coefficients values don’t exceed the recommended values of the standard diesel engine.


Author(s):  
Katelynn M. Routh ◽  
Scott J. Curran ◽  
David K. Irick

The U.S. Department of Energy’s (DOE) Advanced Vehicle Technology Competition (AVTC) series is a long running collegiate vehicle design competition for North American universities. The current three year competition series, known as EcoCAR 2: Plugging In To the Future, has students design and build a hybrid electric vehicle (HEV) that also incorporates alternative fuel. Teams are donated a 2013 Chevrolet Malibu by General Motors to modify. A significant aspect of the competition series is the public outreach and education aspect that leverages the expertise of the students in advanced vehicle technologies and alternative fuels. This also highlights the systems level approach to integrating all aspects of the vehicle to build a vehicle that has the best possible fuel economy, lowest well-to-wheel greenhouse gas emissions and lowest criteria air pollutant emissions while maintaining or exceeding vehicle performance, utility and safety. This paper presents an overview of the University of Tennessee’s (Team Tennessee) EcoCAR 2 outreach program, including core program goals and measures of effectiveness of the program for Year 2 of the competition. The paper focuses on the role that such programs can have on effective science, technology, engineering and mathematics recruiting through an overview of the outreach activities and the integration of hands on activities and partnerships with local schools. The leveraging of outreach and education capabilities with the team’s outreach partners is also highlighted.


Author(s):  
V Pirouzpanah ◽  
R Khoshbakhti Saray

Dual-fuel engines at part loads inevitably suffer from lower thermal efficiency and higher carbon monoxide and unburned fuel emission. The present work was carried out to investigate the combustion characteristics of a dual-fuel (diesel-gas) engine at part loads, using a single-zone combustion model with detailed chemical kinetics for combustion of natural gas fuel. The authors have developed software in which the pilot fuel is considered as a subsidiary zone and a heat source derived from two superimposedWiebe combustion functions to account for its contribution to ignition of the gaseous fuel and the rest of the total released energy. The chemical kinetics mechanism consists of 112 reactions with 34 species. This quasi-two-zone combustion model is able to establish the development of the combustion process with time and the associated important operating parameters, such as pressure, temperature, heat release rate (HRR), and species concentration. Therefore, this paper describes an attempt to investigate the combustion phenomenon at part loads and using hot exhaust gas recirculation (EGR) to improve the above-mentioned drawbacks and problems. By employing this technique, it is found that lower percentages of EGR and allowance for its thermal and radical effects have a positive influence on performance and emission parameters of dual-fuel engines at part loads. Predicted values show good agreement with corresponding experimental values under special engine operating conditions (quarter-load, 1400 r/min). Implications are discussed in detail.


2013 ◽  
Vol 154 (3) ◽  
pp. 12-24
Author(s):  
Zdzisław STELMASIAK

Worsening of economic and environmental parameters of a dual fuel engine at partial engine loads results from protracted combustion of leaned gas air mixture. This leads to reduction of overall efficiency and growth of CO and THC emissions. Such problems are difficult to solve in traction engines due to theirfrequent operation at partial loads and rapid changes of engine load and rotational speed. Negative effects of leaning of gaseous mixture can be partially diminished through division of initial dose and activation of combustion of gaseous mixture through delayed injection of additional portion of liquid fuel. In the paper are presented test results of experimental SB3.1 engine run on CNG with divided dose of the Diesel oil. There were analyzed overall efficiency and selected parameters of combustion process. Division of the dose influenced advantageously on parameters of the engine. The overall efficiency increased, while maximal pressure pmx, heat release rate (dQ/da)muxe and pressure growth rate (dp/da)max decreased. The engine with divided dose operated more smoothly with less noise.


2021 ◽  
Author(s):  
Marcin Zacharewicz ◽  
Tomasz Kniaziewicz

The paper presents the results of model and empirical tests conducted for a marine diesel engine fueled by a blend of n-butanol and diesel oil. The research were aimed at assessing the usefulness of the proprietary diesel engine model in conducting research on marine engines powered by alternative fuels to fossil fuels. The authors defined the measures of adequacy. On their basis, they assessed the adequacy of the mathematical model used. The analysis of the results of the conducted research showed that the developed mathematical model is sufficiently adequate. Therefore, both the mathematical model and the computer program based on it will be used in further work on supplying marine engines with mixtures of diesel oil and biocomponents.


2021 ◽  
Vol 312 ◽  
pp. 07022
Author(s):  
Alfredo Lanotte ◽  
Vincenzo De Bellis ◽  
Enrica Malfi

Nowadays there is an increasing interest in carbon-free fuels such as ammonia and hydrogen. Those fuels, on one hand, allow to drastically reduce CO2 emissions, helping to comply with the increasingly stringent emission regulations, and, on the other hand, could lead to possible advantages in performances if blended with conventional fuels. In this regard, this work focuses on the 1D numerical study of an internal combustion engine supplied with different fuels: pure gasoline, and blends of methane-hydrogen and ammonia-hydrogen. The analyses are carried out with reference to a downsized turbocharged two-cylinder engine working in an operating point representative of engine operations along WLTC, namely 1800 rpm and 9.4 bar of BMEP. To evaluate the potential of methane-hydrogen and ammonia-hydrogen blends, a parametric study is performed. The varied parameters are air/fuel proportions (from 1 up to 2) and the hydrogen fraction over the total fuel. Hydrogen volume percentages up to 60% are considered both in the case of methane-hydrogen and ammonia-hydrogen blends. Model predictive capabilities are enhanced through a refined treatment of the laminar flame speed and chemistry of the end gas to improve the description of the combustion process and knock phenomenon, respectively. After the model validation under pure gasoline supply, numerical analyses allowed to estimate the benefits and drawbacks of considered alternative fuels in terms of efficiency, carbon monoxide, and pollutant emissions.


2017 ◽  
Vol 1 ◽  
pp. S5WGLD ◽  
Author(s):  
Wajid A. Chishty ◽  
Tak Chan ◽  
Pervez Canteenwalla ◽  
Craig R. Davison ◽  
Jennifer Chalmers

Abstract Alternative fuel for aviation has been the centre of serious focus for the last decade, owing mostly to the challenges posed by the price of conventional petroleum fuel, energy security and environmental concerns. The downslide in the oil prices in the recent months and the fact that energy security is not considered a major threat in commercial aviation, these factors have worked negatively for the promotion of alternative fuels. However, the continuous commitment to environmental stewardship by Governments and the industry have kept the momentum going towards the transparent integration of renewable alternatives in the aviation market. On the regulatory side, much progress have been made in the same timeframe with five alternative fuels being certified as synthetic blending components for aviation turbine fuels for use in civil aircraft and engines. Another seven alternative fuels are in the various stages of certification protocol. This progress has been made possible because of the extensive performance testing, both at full engine conditions and at engine components level. This article presents the results of engine performance and air pollutant emissions measurements gathered from the alternative fuels qualification testing conducted at the National Research Council Canada over the last seven years. This benchmarking data was collected on various engine platforms at full engine operation at sea level and/or altitude conditions using a variety of aviation alternative fuels and their blends. In order to provide a reference comparison basis, the results collected using the alternative fuels are compared with baseline Jet-A1 or JP-8 conventional fuels.


Sign in / Sign up

Export Citation Format

Share Document