scholarly journals A Stochastic Modelling Approach to Forecast Real-time Ice Jam Flood Severity Along the Transborder (New Brunswick/Maine) Saint John River of North America

Author(s):  
Apurba Das ◽  
Sujata Budhathoki ◽  
Karl-Erich Lindenschmidt

Abstract Ice jam floods (IJF) are a major concern for many riverine communities, government and non-government authorities and companies in the higher latitudes of the northern hemisphere. Ice jam related flooding can result in millions of dollars of property damages, loss of human life and adverse impacts on ecology. Ice jam flood forecasting is challenging as its formation mechanism is chaotic and depends on numerous unpredictable hydraulic and river ice factors. In this study, Modélisation environnementale communautaire – surface hydrology (MESH), a semi-distributed physically-based land-surface hydrological modelling system was used to acquire a 10-day flow forecast, an important boundary condition for any modelling of river ice-jam flood forecasting. A stochastic modelling approach was then applied to simulate hundreds of possible ice-jam scenarios using the hydrodynamic river ice model RIVICE within a Monte-Carlo Analysis (MOCA) framework for the Saint John River from Fort Kent to Grand Falls. First, a 10-day outlook was simulated to provide insight on the severity of ice jam flooding during spring breakup. Then, 3-day forecasts were modelled to provide longitudinal profiles of exceedance probabilities of ice jam flood staging along the river during the ice-cover breakup. Overall, results show that the stochastic approach performed well to estimate maximum probable ice-jam backwater level elevations for the spring 2021 breakup season.

2019 ◽  
Vol 575 ◽  
pp. 381-394 ◽  
Author(s):  
Karl-Erich Lindenschmidt ◽  
Prabin Rokaya ◽  
Apurba Das ◽  
Zhaoqin Li ◽  
Dominique Richard

1990 ◽  
Vol 17 (5) ◽  
pp. 675-685 ◽  
Author(s):  
Harold S. Belore ◽  
Brian C. Burrell ◽  
Spyros Beltaos

In Canada, flooding due to the rise in water levels upstream of an ice jam, or the temporary exceedance of the flow and ice-carrying capacity of a channel upon release of an ice jam, has resulted in the loss of human life and extensive economic losses. Ice jam mitigation is a component of river ice management which includes all activities carried out to prevent or remove ice jams, or to reduce the damages that may result from an ice jam event. This paper presents a brief overview of measures to mitigate the damaging effects of ice jams and contains a discussion on their application to Canadian rivers. Key words: controlled ice breakup, flood control, ice jams, ice management, river ice.


2007 ◽  
Vol 48 (3) ◽  
pp. 188-201 ◽  
Author(s):  
C. Mahabir ◽  
F.E. Hicks ◽  
A. Robinson Fayek

Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2202
Author(s):  
Apurba Das ◽  
Karl-Erich Lindenschmidt

Ice-jam floods pose a serious threat to many riverside communities in cold regions. Ice-jam-related flooding can cause loss of human life, millions of dollars in property damage, and adverse impacts on ecology. An effective flood management strategy is necessary to reduce the overall risk in flood-prone areas. Most of these strategies require a detailed risk-based management study to assess their effectiveness in reducing flood risk. Zoning regulation is a sustainable measure to reduce overall flood risk for a flood-prone area. Zoning regulation is a specified area in a floodplain where certain restrictions apply to different land uses (e.g., development or business). A stochastic framework was introduced to evaluate the effectiveness of a potential zoning regulation. A stochastic framework encompasses the impacts of all the possible expected floods instead of a more traditional approach where a single design flood is incorporated. The downtown area of Fort McMurray along the Athabasca River was selected to explore the impact of zoning regulation on reducing expected annual damages (EAD) from ice-jam flooding. The results show that a hypothetical zoning regulation for a certain area in the town of Fort McMurray (TFM) can be effective in substantially reducing the level of EAD. A global sensitivity analysis was also applied to understand the impacts of model inputs on ice-jam flood risk using a regional sensitivity method. The results show that model boundary conditions such as river discharge, the inflowing volume of ice and ice-jam toe locations are highly sensitive to ice-jam flood risk.


2007 ◽  
Vol 34 (4) ◽  
pp. 473-484 ◽  
Author(s):  
T Kowalczyk Hutchison ◽  
F E Hicks

This paper presents an investigation of all documented ice jam release events for the Athabasca River at Fort McMurray, Alberta. A review of the historical records indicates that release waves in excess of 3 m and propagation speeds of 4–5 m/s are not uncommon. Numerous occurrences of increases in wave speed and magnitude suggest that temporary stalling of ice runs may be a significant factor in release event propagation. Detailed measurements of ice jam release events in 2001–2003, including most notably a 4.3 m high release wave measured in 2002, provide unprecedented data describing ice jam release wave propagation and suggest that continued propagation of a portion of the release wave downstream of a reformed jam could be a significant factor in immediate re-release.Key words: ice jam, floods, flood forecasting, river ice, ice jam release.


2012 ◽  
Vol 26 (17) ◽  
pp. 2535-2545 ◽  
Author(s):  
Spyros Beltaos ◽  
Patrick Tang ◽  
Robert Rowsell

2021 ◽  
Vol 52 ◽  
pp. 102001
Author(s):  
Brandon S. Williams ◽  
Apurba Das ◽  
Peter Johnston ◽  
Bin Luo ◽  
Karl-Erich Lindenschmidt

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5037
Author(s):  
Narongkorn Uthathip ◽  
Pornrapeepat Bhasaputra ◽  
Woraratana Pattaraprakorn

Electric Vehicle (EV) technology is one of the most promising solutions to reduce dependence on fossil fuels and greenhouse gas (GHG) emissions in the transportation sector. However, a large increase of EVs raises concerns about negative impacts on electricity generation, transmission, and distribution systems. This study analyzes the benefits and trade-offs for EV penetration in Thai road transport based on EV penetration scenarios from 2019 to 2036. Two charging strategies are considered to assess the impact of EV charging: free charging and off-peak charging. Uncertainty variables are considered by a stochastic approach based on Monte-Carlo simulation (MCS). The simulation results shown that the adoption of EVs can reduce both energy consumption and GHG emissions. The results also indicate that the increased load due to EV charging demand in all scenarios is still within the buffer level, compared to the installed generation capacity in the Power Development Plan 2018 revision 1 (PDP2018r1), and the off-peak charging strategy is more beneficial than the free-charging strategy. However, the increased load demand caused by all EV charging strategies has a direct impact on the power generating schedule, and also decreases the system reliability level.


Sign in / Sign up

Export Citation Format

Share Document