scholarly journals Numerical Analysis of Slope Stability Considering Grading and Seepage Prevention

Author(s):  
Fuyu Yan ◽  
Lianrong Wu ◽  
Xining Sun ◽  
Qiwu Shen ◽  
Qiaofeng Dong ◽  
...  

Abstract The normal operation of Yulangpei tailings reservoir is affected by landslide stability. In this paper, taking the main and side slopes near the dam bank of the Yulangpei ditch as an example, water-soil coupling theory is applied to comprehensively evaluate the reliability of the side slopes of the tailings reservoir. Grading and seepage prevention (GSP) measures and the suction of the substrate are considered, as well as the infiltration of different rainfall and reservoir water levels. We numerically simulate the typical three forms of side slopes under the coupling conditions and conduct a reliable and comprehensive evaluation of tailings reservoir side slopes. The study shows that under six reservoir water level changes, the factor of safety (FS) of the bank slope shows a hysteresis effect. According to nine rainfall infiltration conditions and during rainfall, the greater the rainfall intensity, the greater the weakening effect. When rainfall stops, the FS rebounds. After GSP measures, the initial stability of the bank slope under different conditions is improved, but the main slope is more sensitive to changes in rainfall and water levels.

2021 ◽  
Vol 13 (14) ◽  
pp. 2744
Author(s):  
Nan Xu ◽  
Huiying Zheng ◽  
Yue Ma ◽  
Jian Yang ◽  
Xinyuan Liu ◽  
...  

Accurate and detailed information on lake/reservoir water levels and temporal changes around the globe is urgently required for water resource management and related studies. The traditional satellite radar altimeters normally monitor water level changes of large lakes and reservoirs (i.e., greater than 1 km2) around the world. Fortunately, the recent Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) makes it possible to monitor water level changes for some small lakes and reservoirs (i.e., less than 1 km2). ICESat-2 ATL13 products provide observations of inland water surface heights, which are suitable for water level estimation at a global scale. In this study, ICESat-2 ATL13 products were used to conduct a global estimation and assessment of lake/reservoir water level changes. We produced monthly water levels for 13,843 lakes and reservoirs with areas greater than 0.1 km2 and all-season ATL13 products across the globe, in which 2257 targets are smaller than 1 km2. In total, the average valid number of months covered by ICESat-2 is 5.41 months and only 204 of 13,843 lakes and reservoirs have water levels in all the months in 2019. In situ water level data from 21 gauge stations across the United States and 12 gauge stations across Australia were collected to assess the monthly lake/reservoir water levels, which exhibited a high accuracy (RMSE = 0.08 m, r = 0.999). According to comparisons between the monthly water levels and changes from ATL08 products in another study and ATL13 products in this study, we found that both products can accurately estimate the monthly water level of lakes and reservoirs, but water levels derived from ATL13 products exhibited a higher accuracy compared with water levels derived from ATL08 products (RMSE = 0.28 m, r = 0.999). In general, the ATL13 product is more convenient because the HydroLAKES mask of inland water bodies, the orthometric height (with respect to the EGM2008 geoid) of water surfaces, and several data quality parameters specific to water surfaces were involved in the ATL13 product.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2011
Author(s):  
Pablo Páliz Larrea ◽  
Xavier Zapata Ríos ◽  
Lenin Campozano Parra

Despite the importance of dams for water distribution of various uses, adequate forecasting on a day-to-day scale is still in great need of intensive study worldwide. Machine learning models have had a wide application in water resource studies and have shown satisfactory results, including the time series forecasting of water levels and dam flows. In this study, neural network models (NN) and adaptive neuro-fuzzy inference systems (ANFIS) models were generated to forecast the water level of the Salve Faccha reservoir, which supplies water to Quito, the Capital of Ecuador. For NN, a non-linear input–output net with a maximum delay of 13 days was used with variation in the number of nodes and hidden layers. For ANFIS, after up to four days of delay, the subtractive clustering algorithm was used with a hyperparameter variation from 0.5 to 0.8. The results indicate that precipitation was not influencing input in the prediction of the reservoir water level. The best neural network and ANFIS models showed high performance, with a r > 0.95, a Nash index > 0.95, and a RMSE < 0.1. The best the neural network model was t + 4, and the best ANFIS model was model t + 6.


Water ◽  
2017 ◽  
Vol 9 (7) ◽  
pp. 450 ◽  
Author(s):  
Faming Huang ◽  
Xiaoyan Luo ◽  
Weiping Liu

It is significant to study the variations in the stability coefficients of hydrodynamic pressure landslides with different permeability coefficients affected by reservoir water level fluctuations and rainstorms. The Sifangbei landslide in Three Gorges Reservoir area is used as case study. Its stability coefficients are simulated based on saturated-unsaturated seepage theory and finite element analysis. The operating conditions of stability coefficients calculation are reservoir water level variations between 175 m and 145 m, different rates of reservoir water level fluctuations, and a three-day continuous rainstorm. Results show that the stability coefficient of the hydrodynamic pressure landslide decreases with the drawdown of the reservoir water level, and a rapid drawdown rate leads to a small stability coefficient when the permeability coefficient ranges from 1.16 × 10−6 m/s to 4.64 × 10−5 m/s. Additionally, the landslide stability coefficient increases as the reservoir water level increases, and a rapid increase in the water level leads to a high stability coefficient when the permeability coefficient ranges from 1.16 × 10−6 m/s to 4.64 × 10−5 m/s. The landslide stability coefficient initially decreases and then increases as the reservoir water level declines when the permeability coefficient is greater than 4.64 × 10−5 m/s. Moreover, for structures with the same landslide, the landslide stability coefficient is most sensitive to the change in the rate of reservoir water level drawdown when the permeability coefficient increases from 1.16 × 10−6 m/s to 1.16 × 10−4 m/s. Additionally, the rate of decrease in the stability coefficient increases as the permeability coefficient increases. Finally, the three-day rainstorm leads to a significant reduction in landslide stability, and the rate of decrease in the stability coefficient initially increases and then decreases as the permeability coefficient increases.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3576
Author(s):  
Jun Zhang ◽  
Yaowu Min ◽  
Baofei Feng ◽  
Weixin Duan

In today’s reservoir operation study, it is urgent to solve the issues on improving flood resource utilization, maximizing reservoir impoundment, and guaranteeing water supply through real-time regulation optimization under the premise of ensuring flood control safety and taking risks properly. Based on previous studies, the key real-time operation technologies for dynamic control of reservoir water levels in flood season are summarized. The Danjiangkou Reservoir was taken as an example, the division of flood stages, reservoir water level requirements for improving water supply guarantee, dynamic control indexes of reservoir water level for beneficial use in stages during the flood season, and flood control dispatching indexes are proposed. Moreover, a practicable real-time flood forecast operation scheme for Danjiangkou Reservoir was compiled. Its application in 2017 indicated that the established scheme can provide strong technical support to ensure the overall benefits of Danjiangkou Reservoir, including flood control, water supply, and power generation.


2010 ◽  
Vol 7 (4) ◽  
pp. 6025-6055
Author(s):  
B. M. Teklu ◽  
H. Tekie ◽  
M. McCartney ◽  
S. Kibret

Abstract. Entomological studies to determine the effect of the physical characteristics of larval breeding water bodies and reservoir water level changes on the occurrence of Anopheles mosquito larvae and on the spatial and temporal formation of larval breeding habitats were conducted in two villages at Koka reservoir between August and December 2007. Of the two study villages, Ejersa is in close proximity to the reservoir, and Kuma is 5 km away from it. Data on the type, number and physical characteristics of Anopheles larval breeding habitat, species composition and densities of anopheles mosquitoes in and around the study villages were investigated and recorded. Meteorological and reservoir water level data were compared with availability of Anopheles larval breeding sites and densities. Entomological data from the weekly larval collections showed that Anopheles pharoensis Theobald, Anopheles gambiae s.l. Giles, Anopheles coustani Laveran and Anopheles squamosus Theobald were breeding in the study area. The mean larval density of A. gambiae s.l. in this study was higher in slightly turbid and shallow aquatic habitats than in turbid and relatively deep aquatic habitats (F=16.97, p<0.05 and F=6.03, p<0.05, respectively). The density of A. pharoensis in habitat with floating vegetation and with relatively shady conditions was significantly higher than that of less shaded aquatic habitat and greater emergent vegetation (F=15.75, p<0.05 and F=10.56, p<0.05, respectively). There was also a positive correlation between the occurrence of Anopheles larvae with water temperature of the breeding habitat and daily minimum atmospheric temperature (r=0.541, p<0.05 and r=0.604, p<0.05, respectively). Similarly, there was a positive correlation between falling reservoir water levels and the number of positive breeding habitats at Ejersa during the sampling period (r=0.605, p<0.05). Results in this study show that physical characteristics such as water temperature, turbidity, depth and vegetation cover play an important role in the species composition, total Anopheles larval count, and the density of Anopheles mosquitoes in the vicinity. The proliferation of suitable breeding habitats around the reservoir villages is strongly associated with reservoir water level changes. This is particularly important for A. pharoensis and A. arabiensis which are important vectors of malaria in the area. Further investigation on the species diversity, physical and chemical habitat characteristics and impact of water holding capacity of the soil need to be done to generate detailed baseline data which will serve as a basis for proper water management activities for malaria risk mitigation.


2021 ◽  
Author(s):  
Surajit Ghosh ◽  
Atul Kaushik

Monitoring inland water levels is crucial for understanding hydrological processes to climate change impact leading to policy implementation. Satellite altimetry has proved to be an excellent technique to precisely measure water levels of rivers, lakes, and other inland water bodies. The ATL13 product of ICESat-2 space-borne LiDAR is solely dedicated to inland water bodies. The water surface heights were derived from ICESat-2's strong beams, and performance was assessed with respect to reservoir gauge observations. Statistical measurements were used to understand the agreement (R2= 0.99, %RMSE=0.08) among the datasets. An R2 value of 0.99 was observed between ICESat-2 derived water level anomaly and the reservoir storage anomaly. This study provides a unique opportunity to utilize the ATL13 data product to study reservoir water level variation and estimate the reservoir's storage. The methodology can also be helpful to understand the reservoir storage variation in a data-sparse region.


2021 ◽  
Author(s):  
Zhiqiang Fan ◽  
Yanhao Zheng

Abstract In the Three Gorges Reservoir (TGR) area, the accumulation landslide characterized by stepped slip surfaces is widely developed, and its stability is significantly affected by the fluctuation of reservoir water level. In this paper, the Shuping landslide, a typical accumulation landslide in the TGR area, was selected to study the effect of water level fluctuations on landslide stability. Based on Multi-Circular (M-C) model, it is found that the decline of reservoir water level was the dominant factor causing the decrease of landslide stability. At the end of the decline of reservoir water level, the landslide stability was minimum and the corresponding moment was the most dangerous. The effect of the drawdown speed of reservoir water level on the minimum value of landslide stability had a threshold effect, although the minimum stability coefficient of landslide decreased with the increase of drawdown speed. Under the most dangerous water level conditions, the stability of the piled landslide increased linearly with the increase of the net thrust of piles. Also, by comparing with other classical models, the effectiveness of the M-C model in evaluating landslide stability under the dynamic changes of reservoir water level was verified. The results could provide a reliable scientific basis for improving the stability analysis and reinforcement measures of the accumulation landslide with the multi-circular slip surfaces in the TGR area, as well as can be applied to similar landslides in reservoir areas.


Author(s):  
Ming-liang Chen ◽  
Xing-guo Yang ◽  
Shun-chao Qi ◽  
Hai-bo Li ◽  
Jia-wen Zhou

Occurrence of a reservoir landslide and its potential secondary hazards near a dam can result in significant losses and casualties, such as those that resulted from the Vajont landslide. In this study, a cataclinal rock slope in the Maoergai reservoir was taken as a case to study the characteristics of the gravitational deformation process and to analyze the potential threat. The stability of rock slope is analyzed by the limit equilibrium method, and the potential landslide movement and subsequent waves are also simulated. Results indicate that lithology, geological structure, reservoir water level changes and artificial activities all play an important role for the large deformation of rock slope deformation, which is characterized by a combination of bending-toppling and principally shear-slip. Pre-calculations of potential threats indicated that the impact of a landslide wave would be greater at dead water levels than at the normal water level and could result in blockage of the inlet to the water diversion structure on the opposite right bank. These findings provide implication for the control of reservoir rock slopes: (i) serious attention should be paid to the influence of water on rock strength in early and (ii) infiltration must be prevented during water level rise.Thematic collection: This article is part of the Role of water in destabilizing slopes collection available at: https://www.lyellcollection.org/cc/Role-of-water-in-destabilizing-slopes


Author(s):  
R. Asmaranto ◽  
D. Sisinggih ◽  
R.N.A Rastanto

Lots of dam failures are the result of uncontrolled seepage. The collapse of the Situ Gintung Dam in Tangerang, Banten-Indonesia in 2009 due to heavy rains caused the dam structure to collapse. This is due to increased pore water pressure in the landfill. To anticipate collapse due to uncontrolled seepage, it is necessary to monitor it based on the behavior of changes in rainfall and reservoir water levels. Seepage within the dam body is often monitored using instrumentation tools such as standpipe piezometer (standpipe piezometer) or electric piezometer. But often the piezometer cannot work properly because it is clogged, so it cannot monitor the condition of the seepage. Other instrumentations such as V-Notch are also used to measure seepage discharge. This study aims to determine the behavior of changes in the reservoir water level caused by changes in rainfall and its effect on body seepage of the earth-fill Type dam. By knowing the phenomenon of the behavior of the relationship between reservoir water infiltration and rainfall, it will obtain information on rainfall that endangers the dam which will affect the downstream. In this study, a case study of the Selorejo Dam was taken which has a large enough reservoir capacity of about 31 million m3 which is included in the Brantas River Basin. The results showed that 5 piezometers devices were damaged (SL 1, SL 2, SL 4, SL 6, and SL 7) where they could not read the phreatic water level properly, and 2 piezometers were less sensitive to reading fluctuations in reservoir water levels. namely SL 10 and SL 11 which showed R2 values of 29.78% and 39.4%, respectively. While the maximum seepage discharge is recorded at 1474 liters/minute, this is still below the critical discharge of 1630 liters/minute allowed for this dam, but this needs to be a concern, especially the discharge from toe drain from the left side seepage and C-area which is the leakage from the left support pedestal also contributes a larger discharge than other observation points.


Sign in / Sign up

Export Citation Format

Share Document