scholarly journals Novel QTL For Lodging Resistance, PRL4, Improves Physical Properties With High Non-Structural Carbohydrate Accumulation of Basal Culms in Rice (Oryza Sativa L.)

Author(s):  
Takayuki Kashiwagi

Abstract Resistance to lodging, an important problem in rice production, has three types: low plant height, strong culm, and high strength of the lower part of the plant. The determinants of strength of the lower part remains unclear, compared with plant height and culm strength. This study identified a new genetic factor involved in the strength of the lower part, as assessed by pushing resistance, using chromosomal segment substitution lines (CSSLs) to clarify the determinants of strength of the lower part by functional analysis of the CSSL and the near isogenic line (NIL) harboring the identified quantitative trait locus (QTL). QTL analysis identified the QTL for increasing pushing resistance on chromosome 4, PRL4, which was not related to days to heading. The CSSL with PRL4 showed increased pushing resistance and physical strength of the basal culm, but decreased filled grain ratio and grain weight. The NIL with PRL4, developed by backcrossing this CSSL, improved pushing resistance and the strain of culm until breaking under compression, and did not decrease yield traits. These lines with PRL4 increased the accumulation of non-structural carbohydrate (NSC) in the basal culm at the fully ripe stage. Thus, the genetic control of NSC accumulation in culms by PRL4 may improve the strength of the lower part by enhancing culm toughness with strength and ductility.

2021 ◽  
Author(s):  
Takayuki Kashiwagi

Abstract Resistance to lodging, an important problem in rice production, has three types: low plant height, strong culm, and high strength of the lower part of the plant. The determinants of strength of the lower part remains unclear, compared with plant height and culm strength. This study identified a new genetic factor involved in the strength of the lower part, as assessed by pushing resistance, using chromosomal segment substitution lines (CSSLs) to clarify the determinants of strength of the lower part by functional analysis of the CSSL and the near isogenic line (NIL) harboring the identified quantitative trait locus (QTL). QTL analysis identified the QTL for increasing pushing resistance on chromosome 4, PRL4, which was not related to days to heading. The CSSL with PRL4 showed increased pushing resistance and physical strength of the basal culm, but decreased filled grain ratio and grain weight. The NIL with PRL4, developed by backcrossing this CSSL, improved pushing resistance and the strain of culm until breaking under compression, and did not decrease yield traits. These lines with PRL4 increased the accumulation of non-structural carbohydrate (NSC) in the basal culm at the fully ripe stage. Thus, the genetic control of NSC accumulation in culms by PRL4 may improve the strength of the lower part by enhancing culm toughness with strength and ductility.


2020 ◽  
Vol 21 (4) ◽  
pp. 1344 ◽  
Author(s):  
Shaowen Yuan ◽  
Yuntong Wang ◽  
Chaopu Zhang ◽  
Hanzi He ◽  
Sibin Yu

Timing of germination determines whether a new plant life cycle can be initiated; therefore, appropriate dormancy and rapid germination under diverse environmental conditions are the most important features for a seed. However, the genetic architecture of seed dormancy and germination behavior remains largely elusive. In the present study, a linkage analysis for seed dormancy and germination behavior was conducted using a set of 146 chromosome segment substitution lines (CSSLs), of which each carries a single or a few chromosomal segments of Nipponbare (NIP) in the background of Zhenshan 97 (ZS97). A total of 36 quantitative trait loci (QTLs) for six germination parameters were identified. Among them, qDOM3.1 was validated as a major QTL for seed dormancy in a segregation population derived from the qDOM3.1 near-isogenic line, and further delimited into a genomic region of 90 kb on chromosome 3. Based on genetic analysis and gene expression profiles, the candidate genes were restricted to eight genes, of which four were responsive to the addition of abscisic acid (ABA). Among them, LOC_Os03g01540 was involved in the ABA signaling pathway to regulate seed dormancy. The results will facilitate cloning the major QTLs and understanding the genetic architecture for seed dormancy and germination in rice and other crops.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2421
Author(s):  
Yanan Niu ◽  
Tianxiao Chen ◽  
Chenchen Zhao ◽  
Meixue Zhou

Crop height not only determines plant resistance to lodging and crowding, but also affects crop architecture, apical dominance, biomass, and mechanical harvesting. Plant height is determined by the internode elongation, regulated by genes involved in gibberellin (GA) and brassinosteroid (BR) biosynthesis or related signaling networks. Plants’ genetic inability to synthesize or respond to GAs and BRs induce dwarfness. However, the signaling mechanisms of GAs and BRs for controlling plant height individually or collectively are still unclear. Since stem mechanically supports plant during the whole life span, components that affect stem physical strength are also important to crop lodging resistance. One of the major components is lignin, which forms stem structure, thus contributing to crop lodging resistance. In this review, we looked into the reported genes involved in lignin, GAs, and BRs biosynthesis and summarized the signaling networks centered by these genes. Then, we filled the knowledge gap by modifying plant height through interrupting normal GA and BR metabolism utilizing core gene inhibitors. Therefore, we highly endorsed the current approaches of using plant growth regulators (PRGs) to maintain an ideal plant height under lodging stress, and proposed possibilities of modifying crop culm strength against lodging as well.


2019 ◽  
Vol 21 (1) ◽  
pp. 42 ◽  
Author(s):  
Ruichao Li ◽  
Hongwei Jiang ◽  
Zhanguo Zhang ◽  
Yuanyuan Zhao ◽  
Jianguo Xie ◽  
...  

Soybean is one of the most important food and oil crops in the world. Plant height (PH) and the number of nodes on the main stem (NNMS) are quantitative traits closely related to soybean yield. In this study, we used 208 chromosome segment substitution lines (CSSL) populations constructed using “SN14” and “ZYD00006” for quantitative trait locus (QTL) mapping of PH and NNMS. Combined with bulked segregant analysis (BSA) by extreme materials, 8 consistent QTLs were identified. According to the gene annotation of the QTL interval, a total of 335 genes were obtained. Five of which were associated with PH and NNMS, potentially representing candidate genes. RT-qPCR of these 5 candidate genes revealed two genes with differential relative expression levels in the stems of different materials. Haplotype analysis showed that different single nucleotide polymorphisms (SNPs) between the excellent haplotypes in Glyma.04G251900 and Glyma.16G156700 may be the cause of changes in these traits. These results provide the basis for research on candidate genes and marker-assisted selection (MAS) in soybean breeding.


2020 ◽  
Vol 21 (17) ◽  
pp. 6170 ◽  
Author(s):  
Gul Nawaz ◽  
Babar Usman ◽  
Neng Zhao ◽  
Yue Han ◽  
Zhihua Li ◽  
...  

In rice, semi-dwarfism is among the most required characteristics, as it facilitates better yields and offers lodging resistance. Here, semi-dwarf rice lines lacking any residual transgene-DNA and off-target effects were generated through CRISPR/Cas9-guided mutagenesis of the OsGA20ox2 gene in a high yielding Basmati rice line, and the isobaric tags for relative and absolute quantification (iTRAQ) strategy was utilized to elucidate the proteomic changes in mutants. The results indicated the reduced gibberellins (GA1 and GA4) levels, plant height (28.72%), and flag leaf length, while all the other traits remained unchanged. The OsGA20ox2 expression was highly suppressed, and the mutants exhibited decreased cell length, width, and restored their plant height by exogenous GA3 treatment. Comparative proteomics of the wild-type and homozygous mutant line (GXU43_9) showed an altered level of 588 proteins, 273 upregulated and 315 downregulated, respectively. The identified differentially expressed proteins (DEPs) were mainly enriched in the carbon metabolism and fixation, glycolysis/gluconeogenesis, photosynthesis, and oxidative phosphorylation pathways. The proteins (Q6AWY7, Q6AWY2, Q9FRG8, Q6EPP9, Q6AWX8) associated with growth-regulating factors (GRF2, GRF7, GRF9, GRF10, and GRF11) and GA (Q8RZ73, Q9AS97, Q69VG1, Q8LNJ6, Q0JH50, and Q5MQ85) were downregulated, while the abscisic stress-ripening protein 5 (ASR5) and abscisic acid receptor (PYL5) were upregulated in mutant lines. We integrated CRISPR/Cas9 with proteomic screening as the most reliable strategy for rapid assessment of the CRISPR experiments outcomes.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1328
Author(s):  
Noushin Jahan ◽  
Yang Lv ◽  
Mengqiu Song ◽  
Yu Zhang ◽  
Liangguang Shang ◽  
...  

Salinity is a major abiotic stressor that leads to productivity losses in rice (Oryza sativa L.). In this study, transcriptome profiling and heterosis-related genes were analyzed by ribonucleic acid sequencing (RNA-Seq) in seedlings of a mega rice hybrid, Liang-You-Pei-Jiu (LYP9), and its two parents 93–11 and Pei-ai64s (PA64s), under control and two different salinity levels, where we found 8292, 8037, and 631 salt-induced differentially expressed genes (DEGs), respectively. Heterosis-related DEGs were obtained higher after 14 days of salt treatment than after 7 days. There were 631 and 4237 salt-induced DEGs related to heterosis under 7-day and 14-day salt stresses, respectively. Gene functional classification showed the expression of genes involved in photosynthesis activity after 7-day stress treatment, and in metabolic and catabolic activity after 14 days. In addition, we correlated the concurrence of an expression of DEGs for the bHLH transcription factor and a shoot length/salinity-related quantitative trait locus qSL7 that we fine-mapped previously, providing a confirmed case of heterosis-related genes. This experiment reveals the transcriptomic divergence of the rice F1 hybrid and its parental lines under control and salt stress state, and enlightens about the significant molecular mechanisms developed over time in response to salt stress.


2008 ◽  
Vol 117 (5) ◽  
pp. 749-757 ◽  
Author(s):  
Takayuki Kashiwagi ◽  
Eiji Togawa ◽  
Naoki Hirotsu ◽  
Ken Ishimaru

2019 ◽  
Vol 54 (1) ◽  
pp. 149-157
Author(s):  
M.A. Skazhennik ◽  
◽  
N.V. Vorobyov ◽  
A.Kh. Sheudzen ◽  
V.S. Kovalyov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document