scholarly journals Differential Protein Expression in Exponential and Stationary Growth Phases of Mycobacterium avium subsp. hominissuis 104

2020 ◽  
Author(s):  
Shymaa Enany ◽  
Manabu Ato ◽  
Sohkichi Matsumoto

Abstract Background:Mycobacterium avium complex (MAC) is the most common non-tuberculous mycobacteria (NTM) causing different types of pulmonary diseases. Although, genomic and transcriptomic analysis of Mycobacterium avium 104 (M. avium 104) have extensively done, little is known about the proteomics of M. avium 104. Methods:We utilized the proteomics technology to analyze the changes in the whole proteome of M. avium 104 during exponential and stationary growth phases. Results:We found 12 dys-regulated proteins; the up-regulated protein hits in the stationary phase were involved in aminopeptidase, choline dehydrogenase, oxidoreductase, and ATP binding, while, the down-regulated proteins in the stationary phase were acetyl-CoA acetyltransferase, universal stress protein, catalase peroxidase, and elongation factor (Tu). The differently expressed proteins between exponential and stationary phases were implicated in metabolism and stress response pointing to the functional adaptation of the cells to the environment. Conclusion:Proteomic analysis in different growth phases could participate in understanding the course of infection, the mechanisms of virulence, the means of survival, and the possible targets for treatment.

Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 305
Author(s):  
Shymaa Enany ◽  
Manabu Ato ◽  
Sohkichi Matsumoto

Mycobacterium avium complex (MAC) is the most common non-tuberculous mycobacterium (NTM) and causes different types of pulmonary diseases. While genomic and transcriptomic analysis of Mycobacterium avium 104 (M. avium 104) has been extensive, little is known about the proteomics of M. avium 104. We utilized proteomics technology to analyze the changes in the whole proteome of M. avium 104 during exponential and stationary growth phases. We found 12 dys-regulated proteins; the up-regulated protein hits in the stationary phase were involved in aminopeptidase, choline dehydrogenase, oxidoreductase, and ATP binding, while the down-regulated proteins in the stationary phase were acetyl-CoA acetyltransferase, universal stress protein, catalase peroxidase, and elongation factor (Tu). The differently expressed proteins between exponential and stationary phases were implicated in metabolism and stress response, pointing to the functional adaptation of the cells to the environment. Proteomic analysis in different growth phases could participate in understanding the course of infection, the mechanisms of virulence, the means of survival, and the possible targets for treatment.


Author(s):  
D.W. Pond ◽  
R.P. Harris

The lipid class and fatty acid composition of eight geographically disperse isolates of Emiliania huxleyi, grown under 12 h L:D cycles and harvested during logarithmic and stationary growth phases, were examined. Cell size and chlorophyll content tended to decrease from logarithmic to stationary growth phase, Methyl and ethyl ketones were the dominant lipid classes, although proportions exhibited no clear pattern either between strains or growth phases. Neutral lipid hardly accumulated over the course of the growth experiments, and triacylglycerol was either absent or only present at low levels. In all strains with the exception of a South African isolate, levels of total fatty acid per cell decreased markedly between logarithmic and stationary phases, primarily attributable to reductions in the levels of saturated and monounsaturated fatty acids. Major fatty acids in all strains during both growth phases were 14:0,16:0,18:1 (n-9), 18:4 (n-3), 18:5 (n-3) and 22:6 (n-3). Although all strains were rich in polyunsaturated fatty acids (47–72% of total fatty acids) stationary phase cultures consistently contained the highest proportions. The polyunsaturated fatty acid docosahexanoic acid (22:6, n-3) was the most abundant fatty acid in all strains, comprising a maximum of 38·4% of total fatty acids in strain M 181 during stationary phase. Multivariate analysis (PCA) allowed logarithmic and stationary phase cultures to be distinguished although no obvious intra-isolate variability was apparent. The results are discussed in terms of the importance of lipids for the ecophysiology of E. huxleyi and the role of this dominant coccolithophore in the marine food chain.


1998 ◽  
Vol 66 (11) ◽  
pp. 5119-5124 ◽  
Author(s):  
Ramesh Ramamoorthy ◽  
Mario T. Philipp

ABSTRACT In an earlier paper we described the transcriptionally regulated differential levels of expression of two lipoproteins of Borrelia burgdorferi, P35 and P7.5, during growth of the spirochetes in culture from logarithmic phase to stationary phase (K. J. Indest, R. Ramamoorthy, M. Solé, R. D. Gilmore, B. J. B. Johnson, and M. T. Philipp, Infect. Immun. 65:1165–1171, 1997). Here we further assess this phenomenon by investigating whether the expression of other antigens of B. burgdorferi, including some well-characterized ones, are also regulated in a growth-phase-dependent manner in vitro. These studies revealed 13 additional antigens, including OspC, BmpD, and GroEL, that were upregulated 2- to 66-fold and a 28-kDa protein that was downregulated 2- to 10-fold, during the interval between the logarithmic- and stationary-growth phases. Unlike with these in vitro-regulated proteins, the levels of expression of OspA, OspB, P72, flagellin, and BmpA remained unchanged throughout growth of the spirochetes in culture. Furthermore, ospAB, bmpAB,groEL, and fla all exhibited similar mRNA profiles, which is consistent with the constitutive expression of these genes. By contrast, the mRNA and protein profiles of ospCand bmpD indicated regulated expression of these genes. While bmpD exhibited a spike in mRNA expression in early stationary phase, ospC maintained a relatively higher level of mRNA throughout culture. These findings demonstrate that there are additional genes besides P7.5 and P35 whose regulated expression can be investigated in vitro and which may thus serve as models to facilitate the study of regulatory mechanisms in an organism that cycles between an arthropod and a vertebrate host.


1999 ◽  
Vol 65 (6) ◽  
pp. 2765-2769 ◽  
Author(s):  
Nivia I. Santiago ◽  
Allan Zipf ◽  
Arun K. Bhunia

ABSTRACT Interaction of Listeria monocytogenes with mammalian intestinal cells is believed to be an important first step inListeria pathogenesis. Transposon (Tn916) mutagenesis provided strong evidence that a 104-kDa surface protein, designated the Listeria adhesion protein (LAP), was involved in adherence of L. monocytogenes to a human enterocyte-like Caco-2 cell line (V. Pandiripally, D. Westbrook, G. Sunki, and A. Bhunia, J. Med. Microbiol. 48:117–124, 1999). In this study, expression of LAP in L. monocytogenes at various growth temperatures (25, 37, and 42°C) and in various growth phases was determined by performing an enzyme-linked immunoassay (ELISA) and Western blotting with a specific monoclonal antibody (monoclonal antibody H7). The ELISA and Western blot results indicated that there was a significant increase in LAP expression over time only at 37 and 42°C and that the level of LAP expression was low during the exponential phase and high during the stationary phase. In contrast, there were not significant differences in LAP expression between the exponential and stationary phases at 25°C. Examination of the adhesion of L. monocytogenes cells from exponential-phase (12-h) or stationary-phase (24-h) cultures grown at 37°C to Caco-2 cells revealed that there were not significant differences in adhesion. Although expression of L. monocytogenes LAP was different at different growth temperatures and in different growth phases, enhanced expression did not result in increased adhesion, possibly because only a few LAP molecules were sufficient to initiate binding to Caco-2 cells.


Genes ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 413 ◽  
Author(s):  
Carla Avila ◽  
Simon Mule ◽  
Livia Rosa-Fernandes ◽  
Rosa Viner ◽  
María Barisón ◽  
...  

Trypanosoma cruzi, the etiologic agent of Chagas disease, cycles through different life stages characterized by defined molecular traits associated with the proliferative or differentiation state. In particular, T. cruzi epimastigotes are the replicative forms that colonize the intestine of the Triatomine insect vector before entering the stationary phase that is crucial for differentiation into metacyclic trypomastigotes, which are the infective forms of mammalian hosts. The transition from proliferative exponential phase to quiescent stationary phase represents an important step that recapitulates the early molecular events of metacyclogenesis, opening new possibilities for understanding this process. In this study, we report a quantitative shotgun proteomic analysis of the T. cruzi epimastigote in the exponential and stationary growth phases. More than 3000 proteins were detected and quantified, highlighting the regulation of proteins involved in different subcellular compartments. Ribosomal proteins were upregulated in the exponential phase, supporting the higher replication rate of this growth phase. Autophagy-related proteins were upregulated in the stationary growth phase, indicating the onset of the metacyclogenesis process. Moreover, this study reports the regulation of N-terminally acetylated proteins during growth phase transitioning, adding a new layer of regulation to this process. Taken together, this study reports a proteome-wide rewiring during T. cruzi transit from the replicative exponential phase to the stationary growth phase, which is the preparatory phase for differentiation.


Diversity ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 459
Author(s):  
Yekaterina Bedoshvili ◽  
Yulia Podunay ◽  
Alyona Nikonova ◽  
Artyom Marchenkov ◽  
Elvira Bairamova ◽  
...  

Diatoms are capable of accumulating substantial amounts of triacylglycerides in their cells, which differ in the composition of fatty acids depending on the conditions of cultivation, making them attractive subjects in biotechnology. In the present study, we characterized the structural features of lipid bodies in the diatom Entomoneis cf. paludosa (W. Smith) Reimer strain 8.0727-B and revealed the peculiarities of fatty acid composition in cultures during the stationary and exponential growth phases. Laser scanning confocal microscopy revealed an increased number of lipid bodies in the cytoplasm during the stationary phase of culture growth. Electron microscopy of ultrathin sections showed that an extreme increase in the number and size of plastoglobules in the cells occurs in the stationary phase of culture growth. The gas chromatography with mass spectrometric detection method revealed differences in the fatty acid composition depending on the growth phase. The studied strain can be recommended as a source of hexadecanoic and octadecanoic fatty acids from the culture during the stationary growth phase, as well as eicosapentaenoic fatty acid from the culture during the exponential growth phase.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Vânia Pobre ◽  
Susana Barahona ◽  
Tatiane Dobrzanski ◽  
Maria Berenice Reynaud Steffens ◽  
Cecília M. Arraiano

Abstract The transition between exponential and stationary phase is a natural phenomenon for all bacteria and requires a massive readjustment of the bacterial transcriptome. Exoribonucleases are key enzymes in the transition between the two growth phases. PNPase, RNase R and RNase II are the major degradative exoribonucleases in Escherichia coli. We analysed the whole transcriptome of exponential and stationary phases from the WT and mutants lacking these exoribonucleases (Δpnp, Δrnr, Δrnb, and ΔrnbΔrnr). When comparing the cells from exponential phase with the cells from stationary phase more than 1000 transcripts were differentially expressed, but only 491 core transcripts were common to all strains. There were some differences in the number and transcripts affected depending on the strain, suggesting that exoribonucleases influence the transition between these two growth phases differently. Interestingly, we found that the double mutant RNase II/RNase R is similar to the RNase R single mutant in exponential phase while in stationary phase it seems to be closer to the RNase II single mutant. This is the first global transcriptomic work comparing the roles of exoribonucleases in the transition between exponential and stationary phase.


2008 ◽  
Vol 74 (15) ◽  
pp. 4847-4852 ◽  
Author(s):  
Anastasia Matthies ◽  
Thomas Clavel ◽  
Michael Gütschow ◽  
Wolfram Engst ◽  
Dirk Haller ◽  
...  

ABSTRACT The metabolism of isoflavones by gut bacteria plays a key role in the availability and bioactivation of these compounds in the intestine. Daidzein and genistein are the most common dietary soy isoflavones. While daidzein conversion yielding equol has been known for some time, the corresponding formation of 5-hydroxy-equol from genistein has not been reported previously. We isolated a strictly anaerobic bacterium (Mt1B8) from the mouse intestine which converted daidzein via dihydrodaidzein to equol as well as genistein via dihydrogenistein to 5-hydroxy-equol. Strain Mt1B8 was a gram-positive, rod-shaped bacterium identified as a member of the Coriobacteriaceae. Strain Mt1B8 also transformed dihydrodaidzein and dihydrogenistein to equol and 5-hydroxy-equol, respectively. The conversion of daidzein, genistein, dihydrodaidzein, and dihydrogenistein in the stationary growth phase depended on preincubation with the corresponding isoflavonoid, indicating enzyme induction. Moreover, dihydrogenistein was transformed even more rapidly in the stationary phase when strain Mt1B8 was grown on either genistein or daidzein. Growing the cells on daidzein also enabled conversion of genistein. This suggests that the same enzymes are involved in the conversion of the two isoflavones.


2016 ◽  
Vol 8 (31) ◽  
pp. 6038-6045 ◽  
Author(s):  
Yadi Wang ◽  
M. Farooq Wahab ◽  
Zachary S. Breitbach ◽  
Daniel W. Armstrong

Stationary phases composed of native cyclofructan 6 (CF6) and benzoic acid modified CF6 were synthesized and evaluated for hydrophilic interaction liquid chromatography (HILIC).


Sign in / Sign up

Export Citation Format

Share Document