scholarly journals Influence of Temperature and Growth Phase on Expression of a 104-Kilodalton Listeria Adhesion Protein inListeria monocytogenes

1999 ◽  
Vol 65 (6) ◽  
pp. 2765-2769 ◽  
Author(s):  
Nivia I. Santiago ◽  
Allan Zipf ◽  
Arun K. Bhunia

ABSTRACT Interaction of Listeria monocytogenes with mammalian intestinal cells is believed to be an important first step inListeria pathogenesis. Transposon (Tn916) mutagenesis provided strong evidence that a 104-kDa surface protein, designated the Listeria adhesion protein (LAP), was involved in adherence of L. monocytogenes to a human enterocyte-like Caco-2 cell line (V. Pandiripally, D. Westbrook, G. Sunki, and A. Bhunia, J. Med. Microbiol. 48:117–124, 1999). In this study, expression of LAP in L. monocytogenes at various growth temperatures (25, 37, and 42°C) and in various growth phases was determined by performing an enzyme-linked immunoassay (ELISA) and Western blotting with a specific monoclonal antibody (monoclonal antibody H7). The ELISA and Western blot results indicated that there was a significant increase in LAP expression over time only at 37 and 42°C and that the level of LAP expression was low during the exponential phase and high during the stationary phase. In contrast, there were not significant differences in LAP expression between the exponential and stationary phases at 25°C. Examination of the adhesion of L. monocytogenes cells from exponential-phase (12-h) or stationary-phase (24-h) cultures grown at 37°C to Caco-2 cells revealed that there were not significant differences in adhesion. Although expression of L. monocytogenes LAP was different at different growth temperatures and in different growth phases, enhanced expression did not result in increased adhesion, possibly because only a few LAP molecules were sufficient to initiate binding to Caco-2 cells.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Vânia Pobre ◽  
Susana Barahona ◽  
Tatiane Dobrzanski ◽  
Maria Berenice Reynaud Steffens ◽  
Cecília M. Arraiano

Abstract The transition between exponential and stationary phase is a natural phenomenon for all bacteria and requires a massive readjustment of the bacterial transcriptome. Exoribonucleases are key enzymes in the transition between the two growth phases. PNPase, RNase R and RNase II are the major degradative exoribonucleases in Escherichia coli. We analysed the whole transcriptome of exponential and stationary phases from the WT and mutants lacking these exoribonucleases (Δpnp, Δrnr, Δrnb, and ΔrnbΔrnr). When comparing the cells from exponential phase with the cells from stationary phase more than 1000 transcripts were differentially expressed, but only 491 core transcripts were common to all strains. There were some differences in the number and transcripts affected depending on the strain, suggesting that exoribonucleases influence the transition between these two growth phases differently. Interestingly, we found that the double mutant RNase II/RNase R is similar to the RNase R single mutant in exponential phase while in stationary phase it seems to be closer to the RNase II single mutant. This is the first global transcriptomic work comparing the roles of exoribonucleases in the transition between exponential and stationary phase.


1972 ◽  
Vol 129 (2) ◽  
pp. 291-299 ◽  
Author(s):  
K. A. Abraham ◽  
K. J. Andersen ◽  
A. Rognes

1. RNA polymerase activity of Escherichia coli extracts prepared from cells in exponential and stationary phases of growth, when measured in the presence and absence of external template, showed significant qualitative differences. 2. In both extracts, polymerase activity was higher when assayed with external template, suggesting the presence of a pool of enzyme not bound to cellular DNA. 3. In the crude extract, the fraction of enzyme bound to cellular DNA is higher during the exponential phase of growth. 4. A method is described for the purification of enzyme molecules not tightly bound to cellular DNA from exponential- and stationary-phase cultures. 5. Purified enzyme preparations showed differences in template requirement and subunit composition. 6. On phosphocellulose chromatography of stationary-phase enzyme, a major portion of polymerase activity eluted from the column with 0.25m-KCl. In the case of exponential-phase enzyme, polymerase activity eluted from a phosphocellulose column mainly with 0.35m-KCl. 7. Enzyme assays done with excess of bacteriophage T4 DNA showed a strong inhibition of stationary-phase enzyme by this template. The exponential-phase enzyme was only slightly inhibited by excess of bacteriophage T4 DNA.


2010 ◽  
Vol 76 (11) ◽  
pp. 3732-3739 ◽  
Author(s):  
Yosuke Tashiro ◽  
Sosaku Ichikawa ◽  
Motoyuki Shimizu ◽  
Masanori Toyofuku ◽  
Naoki Takaya ◽  
...  

ABSTRACT Pseudomonas aeruginosa and other Gram-negative bacteria release membrane vesicles (MVs) from their surfaces, and MVs have an ability to interact with bacterial cells. Although it has been known that many bacteria have mechanisms that control their phenotypes with the transition from exponential phase to stationary phase, changes of properties in released MVs have been poorly understood. Here, we demonstrate that MVs released by P. aeruginosa during the exponential and stationary phases possess different physiochemical properties. MVs purified from the stationary phase had higher buoyant densities than did those purified from the exponential phase. Surface charge, characterized by zeta potential, of MVs tended to be more negative as the growth shifted to the stationary phase, although the charges of PAO1 cells were not altered. Pseudomonas quinolone signal (PQS), one of the regulators related to MV production in P. aeruginosa, was lower in MVs purified from the exponential phase than in those from the stationary phase. MVs from the stationary phase more strongly associated with P. aeruginosa cells than did those from the exponential phase. Our findings suggest that properties of MVs are altered to readily interact with bacterial cells along with the growth transition in P. aeruginosa.


2016 ◽  
Vol 62 (10) ◽  
pp. 827-835 ◽  
Author(s):  
Chenfeng Yi ◽  
Fenglian Wang ◽  
Shijun Dong ◽  
Hao Li

Traditionally, trehalose is considered as a protectant to improve the ethanol tolerance of Saccharomyces cerevisiae. In this study, to clarify the changes and roles of trehalose during the bioethanol fermentation, trehalose content and expression of related genes at lag, exponential, and stationary phases (i.e., 2, 8, and 16 h of batch fermentation process) were determined. Although yeast cells at exponential and stationary phase had higher trehalose content than cells at lag phase (P < 0.01), there was no significant difference in trehalose content between exponential and stationary phases (P > 0.05). Moreover, expression of the trehalose degradation-related genes NTH1 and NTH2 decreased at exponential phase in comparison with that at lag phase; compared with cells at lag phase, cells at stationary phase had higher expression of TPS1, ATH1, NTH1, and NTH2 but lower expression of TPS2. During the lag–exponential phase transition, downregulation of NTH1 and NTH2 promoted accumulation of trehalose, and to some extent, trehalose might confer ethanol tolerance to S. cerevisiae before stationary phase. During the exponential–stationary phase transition, upregulation of TPS1 contributed to accumulation of trehalose, and Tps1 protein might be indispensable in yeast cells to withstand ethanol stress at the stationary phase. Moreover, trehalose would be degraded to supply carbon source at stationary phase.


2020 ◽  
Author(s):  
Shymaa Enany ◽  
Manabu Ato ◽  
Sohkichi Matsumoto

Abstract Background:Mycobacterium avium complex (MAC) is the most common non-tuberculous mycobacteria (NTM) causing different types of pulmonary diseases. Although, genomic and transcriptomic analysis of Mycobacterium avium 104 (M. avium 104) have extensively done, little is known about the proteomics of M. avium 104. Methods:We utilized the proteomics technology to analyze the changes in the whole proteome of M. avium 104 during exponential and stationary growth phases. Results:We found 12 dys-regulated proteins; the up-regulated protein hits in the stationary phase were involved in aminopeptidase, choline dehydrogenase, oxidoreductase, and ATP binding, while, the down-regulated proteins in the stationary phase were acetyl-CoA acetyltransferase, universal stress protein, catalase peroxidase, and elongation factor (Tu). The differently expressed proteins between exponential and stationary phases were implicated in metabolism and stress response pointing to the functional adaptation of the cells to the environment. Conclusion:Proteomic analysis in different growth phases could participate in understanding the course of infection, the mechanisms of virulence, the means of survival, and the possible targets for treatment.


1988 ◽  
Vol 34 (1) ◽  
pp. 63-67 ◽  
Author(s):  
J. L. Boiardi ◽  
M. L. Galar

The influence of culture age and of growth rate on the nodulation ability of strain F 45 str. Rhizobium phaseoli was studied. Roots of Phaseolus vulgaris L., grown in pouches, were infected with rhizobial suspensions (about 1 × 105 cells/root) taken from different batch cultures at different growth phases. After 24 h the free bacterial population was inhibited by adding tetracycline to the rooting medium. Nodules were counted 15–20 days after inoculation. More nodulation was obtained with rhizobia from early, mid, or late exponential phase than from lag or stationary phases. Differences in nodulation obtained had no correlation to the root attachment capacity of the cells nor to the rhizobial binding to Phaseolus vulgaris L. seed lectin. Bacterial attachment to bean roots was maximal with stationary phase bacteria, while lectin binding reached its maximal value with early exponential phase rhizobia, being very low with mid exponential phase cells. These results suggested that the difference in nodulation achieved with Rhizobium phaseoli at different growth phases could be caused by a step of the infection process not related to early (1 h) microbial attachment to roots nor to bacterial binding to Phaseolus vulgaris L. lectin.


Author(s):  
Norazira Abdu Rahman ◽  
Tomoyo Katayama ◽  
Mohd Effendy Abd Wahid ◽  
Nor Azman Kasan ◽  
Helena Khatoon ◽  
...  

Antioxidants found in microalgae play an essential role in both animals and humans, against various diseases and aging processes by protecting cells from oxidative damage. In this study, 26 indigenous tropical marine microalgae were screened. Out of the 26 screened strains, 10 were selected and were further investigated for their natural antioxidant compounds which include carotenoids, phenolics, and fatty acids collected in their exponential and stationary phases. The antioxidant capacity was also evaluated by a total of four assays, which include ABTS, DPPH, superoxide radical (O2•–) scavenging capacity, and nitric oxide (•NO–) scavenging capacity. This study revealed that the antioxidant capacity of the microalgae varied between divisions, strains, and growth phase and was also related to the content of antioxidant compounds present in the cells. Carotenoids and phenolics were found to be the major contributors to the antioxidant capacity, followed by polyunsaturated fatty acids linoleic acid (LA), eicosapentaenoic acid (EPA), arachidonic acid (ARA), and docosahexaenoic acid (DHA) compared to other fatty acids. The antioxidant capacity of the selected bacillariophytes and haptophytes was found to be positively correlated to phenolic (R2-value = 0.623, 0.714, and 0.786 with ABTS, DPPH, and •NO–) under exponential phase, and to carotenoid fucoxanthin and β-carotene (R2 value = 0.530, 0.581 with ABTS, and 0.710, 0.795 with O2•–) under stationary phase. Meanwhile, antioxidant capacity of chlorophyte strains was positively correlated with lutein, β-carotene and zeaxanthin under the exponential phase (R2 value = 0.615, 0.615, 0.507 with ABTS, and R2 value = 0.794, 0.659, and 0.509 with •NO–). In the stationary phase, chlorophyte strains were positively correlated with violaxanthin (0.755 with •NO–), neoxanthin (0.623 with DPPH, 0.610 with •NO–), and lutein (0.582 with •NO–). This study showed that antioxidant capacity and related antioxidant compound production of tropical microalgae strains are growth phase-dependent. The results can be used to improve the microalgal antioxidant compound production for application in pharmaceutical, nutraceutical, food, and feed industry.


2009 ◽  
Vol 75 (17) ◽  
pp. 5615-5620 ◽  
Author(s):  
Claudia Weigert ◽  
Fabian Steffler ◽  
Tomas Kurz ◽  
Thomas H. Shellhammer ◽  
Frank-J�rgen Methner

ABSTRACT The measurement of yeast's intracellular pH (ICP) is a proven method for determining yeast vitality. Vitality describes the condition or health of viable cells as opposed to viability, which defines living versus dead cells. In contrast to fluorescence photometric measurements, which show only average ICP values of a population, flow cytometry allows the presentation of an ICP distribution. By examining six repeated propagations with three separate growth phases (lag, exponential, and stationary), the ICP method previously established for photometry was transferred successfully to flow cytometry by using the pH-dependent fluorescent probe 5,6-carboxyfluorescein. The correlation between the two methods was good (r 2 = 0.898, n = 18). With both methods it is possible to track the course of growth phases. Although photometry did not yield significant differences between exponentially and stationary phases (P = 0.433), ICP via flow cytometry did (P = 0.012). Yeast in an exponential phase has a unimodal ICP distribution, reflective of a homogeneous population; however, yeast in a stationary phase displays a broader ICP distribution, and subpopulations could be defined by using the flow cytometry method. In conclusion, flow cytometry yielded specific evidence of the heterogeneity in vitality of a yeast population as measured via ICP. In contrast to photometry, flow cytometry increases information about the yeast population's vitality via a short measurement, which is suitable for routine analysis.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yijie Deng ◽  
Douglas Raymond Beahm ◽  
Steven Ionov ◽  
Rahul Sarpeshkar

Abstract Background Adenosine triphosphate (ATP) is the main energy carrier in living organisms, critical for metabolism and essential physiological processes. In humans, abnormal regulation of energy levels (ATP concentration) and power consumption (ATP consumption flux) in cells is associated with numerous diseases from cancer, to viral infection and immune dysfunction, while in microbes it influences their responses to drugs and other stresses. The measurement and modeling of ATP dynamics in cells is therefore a critical component in understanding fundamental physiology and its role in pathology. Despite the importance of ATP, our current understanding of energy dynamics and homeostasis in living cells has been limited by the lack of easy-to-use ATP sensors and the lack of models that enable accurate estimates of energy and power consumption related to these ATP dynamics. Here we describe a dynamic model and an ATP reporter that tracks ATP in E. coli over different growth phases. Results The reporter is made by fusing an ATP-sensing rrnB P1 promoter with a fast-folding and fast-degrading GFP. Good correlations between reporter GFP and cellular ATP were obtained in E. coli growing in both minimal and rich media and in various strains. The ATP reporter can reliably monitor bacterial ATP dynamics in response to nutrient availability. Fitting the dynamics of experimental data corresponding to cell growth, glucose, acetate, dissolved oxygen, and ATP yielded a mathematical and circuit model. This model can accurately predict cellular energy and power consumption under various conditions. We found that cellular power consumption varies significantly from approximately 0.8 and 0.2 million ATP/s for a tested strain during lag and stationary phases to 6.4 million ATP/s during exponential phase, indicating ~ 8–30-fold changes of metabolic rates among different growth phases. Bacteria turn over their cellular ATP pool a few times per second during the exponential phase and slow this rate by ~ 2–5-fold in lag and stationary phases. Conclusion Our rrnB P1-GFP reporter and kinetic circuit model provide a fast and simple way to monitor and predict energy and power consumption dynamics in bacterial cells, which can impact fundamental scientific studies and applied medical treatments in the future.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 305
Author(s):  
Shymaa Enany ◽  
Manabu Ato ◽  
Sohkichi Matsumoto

Mycobacterium avium complex (MAC) is the most common non-tuberculous mycobacterium (NTM) and causes different types of pulmonary diseases. While genomic and transcriptomic analysis of Mycobacterium avium 104 (M. avium 104) has been extensive, little is known about the proteomics of M. avium 104. We utilized proteomics technology to analyze the changes in the whole proteome of M. avium 104 during exponential and stationary growth phases. We found 12 dys-regulated proteins; the up-regulated protein hits in the stationary phase were involved in aminopeptidase, choline dehydrogenase, oxidoreductase, and ATP binding, while the down-regulated proteins in the stationary phase were acetyl-CoA acetyltransferase, universal stress protein, catalase peroxidase, and elongation factor (Tu). The differently expressed proteins between exponential and stationary phases were implicated in metabolism and stress response, pointing to the functional adaptation of the cells to the environment. Proteomic analysis in different growth phases could participate in understanding the course of infection, the mechanisms of virulence, the means of survival, and the possible targets for treatment.


Sign in / Sign up

Export Citation Format

Share Document