scholarly journals Targeting dopamine receptor D2 as a novel therapeutic strategy in endometrial cancer

2020 ◽  
Author(s):  
Stuart R. Pierce ◽  
Ziwei Fang ◽  
Yajie Yin ◽  
Lindsay West ◽  
Majdouline Asher ◽  
...  

Abstract BackgroundONC201 is a dopamine receptor D2 (DRD2) antagonist that inhibits tumor growth in preclinical models through ClpP activation to induce integrated stress response pathway and mitochondrial events related to inhibition of cell growth, which is being explored in clinical trials for solid tumors and hematological malignancies. In this study, we investigated the anti-tumorigenic effect of ONC201 in endometrial cancer cell lines and a genetically engineered mouse model of endometrial cancer.MethodsCell proliferation was assessed by MTT and colony formation assays. Cell cycle and apoptosis were evaluated by Cellometer. Invasion capacity was tested using adhesion, transwell and wound healing assays. LKB1fl/flp53fl/fl mouse model of endometrial cancer were fed a control low fat diet versus a high fat diet to mimic diet-induced obesity. Following tumor onset, mice were treated with placebo or ONC201. Metabolomics and lipidomics were used to identify the obesity-dependent effects of ONC201 in the mouse endometrial tumors. DRD2 expression was analyzed by immunohistochemistry in human endometriod and serous EC specimens. DRD2 mRNA expression from the Cancer Genome Atlas (TCGA) database was compared between the four molecular subtypes of endometrial cancer. ResultsIncreasing DRD2 expression in endometrial cancer was significantly associated with grade, serous histology and stage, as well as worse progression free survival and overall survival. Higher expression of DRD2 mRNA was found for the Copy Number High (CNH) subtype when compared to the other subtypes.. ONC201 inhibited cell proliferation, induced cell cycle G1 arrest, caused cellular stress and apoptosis and reduced invasion in endometrial cancer cells. Diet-induced obesity promoted endometrial tumor growth while ONC201 exhibited anti-tumorigenic efficacy in the obese and lean LKB1fl/fl/p53fl/fl mice. Metabolomic analysis demonstrated that ONC201 reversed the obesity-driven upregulation of lipid biosynthesis and reduced protein biosynthesis in obese and lean mice. ConclusionONC201 has anti-proliferative and anti-tumorigenic effects in endometrial cancer cells and mouse model, and DRD2 expression was documented in both human serous and endometrioid endometrial cancer. These studies support DRD2 antagonism via ONC201 as a promising therapeutic strategy for endometrial cancer that has already demonstrated pharmacodynamic activity and clinical benefit in both serous and endometrioid endometrial cancer patients.

Author(s):  
Stuart R. Pierce ◽  
Ziwei Fang ◽  
Yajie Yin ◽  
Lindsay West ◽  
Majdouline Asher ◽  
...  

Abstract Background ONC201 is a dopamine receptor D2 (DRD2) antagonist that inhibits tumor growth in preclinical models through ClpP activation to induce integrated stress response pathway and mitochondrial events related to inhibition of cell growth, which is being explored in clinical trials for solid tumors and hematological malignancies. In this study, we investigated the anti-tumorigenic effect of ONC201 in endometrial cancer cell lines and a genetically engineered mouse model of endometrial cancer. Methods Cell proliferation was assessed by MTT and colony formation assays. Cell cycle and apoptosis were evaluated by Cellometer. Invasion capacity was tested using adhesion, transwell and wound healing assays. LKB1fl/flp53fl/fl mouse model of endometrial cancer were fed a control low fat diet versus a high fat diet to mimic diet-induced obesity. Following tumor onset, mice were treated with placebo or ONC201. Metabolomics and lipidomics were used to identify the obesity-dependent effects of ONC201 in the mouse endometrial tumors. DRD2 expression was analyzed by immunohistochemistry in human endometrioid and serous carcinoma specimens. DRD2 mRNA expression from the Cancer Genome Atlas (TCGA) database was compared between the four molecular subtypes of endometrial cancer. Results Increasing DRD2 expression in endometrial cancer was significantly associated with grade, serous histology and stage, as well as worse progression free survival and overall survival. Higher expression of DRD2 mRNA was found for the Copy Number High (CNH) subtype when compared to the other subtypes. ONC201 inhibited cell proliferation, induced cell cycle G1 arrest, caused cellular stress and apoptosis and reduced invasion in endometrial cancer cells. Diet-induced obesity promoted endometrial tumor growth while ONC201 exhibited anti-tumorigenic efficacy in the obese and lean LKB1fl/fl/p53fl/fl mice. Metabolomic analysis demonstrated that ONC201 reversed the obesity-driven upregulation of lipid biosynthesis and reduced protein biosynthesis in obese and lean mice. Conclusion ONC201 has anti-tumorigenic effects in endometrial cancer cells and a transgenic mouse model of endometrial cancer, and DRD2 expression was documented in both human serous and endometrioid endometrial cancer. These studies support DRD2 antagonism via ONC201 as a promising therapeutic strategy for endometrial cancer that has already demonstrated pharmacodynamic activity and clinical benefit in both serous and endometrioid endometrial cancer patients.


2021 ◽  
Vol 11 ◽  
Author(s):  
Dario R. Roque ◽  
Lu Zhang ◽  
Weiya Z. Wysham ◽  
Jianjun Han ◽  
Wenchuan Sun ◽  
...  

ObjectivesAnti-diabetic biguanide drugs such as metformin may have anti-tumorigenic effects by behaving as AMPK activators and mTOR inhibitors. Metformin requires organic cation transporters (OCTs) for entry into cells, and NT-1044 is an AMPK activator designed to have greater affinity for two of these transporters, OCT1 and OCT3. We sought to compare the effects of NT-1044 on cell proliferation in human endometrial cancer (EC) cell lines and on tumor growth in an endometrioid EC mouse model.MethodsCell proliferation was assessed in two EC cell lines, ECC-1 and Ishikawa, by MTT assay after exposure to NT-1044 for 72 hours of treatment. Apoptosis was analyzed by Annexin V-FITC and cleaved caspase 3 assays. Cell cycle progression was evaluated by Cellometer. Reactive oxygen species (ROS) were measured using DCFH-DA and JC-1 assays. For the in vivo studies, we utilized the LKB1fl/flp53fl/fl mouse model of endometrioid endometrial cancer. The mice were treated with placebo or NT-1044 or metformin following tumor onset for 4 weeks.ResultsNT-1044 and metformin significantly inhibited cell proliferation in a dose-dependent manner in both EC cell lines after 72 hours of exposure (IC50 218 μM for Ishikawa; 87 μM for ECC-1 cells). Treatment with NT-1044 resulted in G1 cell cycle arrest, induced apoptosis and increased ROS production in both cell lines. NT-1044 increased phosphorylation of AMPK and decreased phosphorylation of S6, a key downstream target of the mTOR pathway. Expression of the cell cycle proteins CDK4, CDK6 and cyclin D1 decreased in a dose-dependent fashion while cellular stress protein expression was induced in both cell lines. As compared to placebo, NT-1044 and metformin inhibited endometrial tumor growth in obese and lean LKB1fl/flp53fl/fl mice.ConclusionsNT-1044 suppressed EC cell growth through G1 cell cycle arrest, induction of apoptosis and cellular stress, activation of AMPK and inhibition of the mTOR pathway. In addition, NT-1044 inhibited EC tumor growth in vivo under obese and lean conditions. More work is needed to determine if this novel biguanide will be beneficial in the treatment of women with EC, a disease strongly impacted by obesity and diabetes.


2014 ◽  
Vol 31 (3) ◽  
pp. 1389-1395 ◽  
Author(s):  
YUAN WANG ◽  
HAIFENG QIU ◽  
WEIXU HU ◽  
SHAORU LI ◽  
JINJIN YU

2014 ◽  
Vol 24 (4) ◽  
pp. 635-642 ◽  
Author(s):  
Jiaming Huang ◽  
Peiqi Ke ◽  
Luyan Guo ◽  
Wei Wang ◽  
Hao Tan ◽  
...  

ObjectiveThe overexpression of long noncoding RNA HOTAIR is associated with various aggressive solid carcinomas. However, its relationship with endometrial carcinoma has not been reported. The present study aimed to investigate the expression of the long noncoding RNA HOTAIR in endometrial carcinoma, its relationship with the carcinoma’s clinicopathologic features, and the biological function of HOTAIR in regulating endometrial cancer cell proliferation and invasion in vitro and in vivo.MethodsThe expression of HOTAIR was detected in different tissues and cell lines by real-time PCR. Lentivirus-mediated HOTAIR-specific shRNAvectors were transfected into endometrial cancer HEC-1A cells. Cell proliferation and colony formation were examined by CCK-8 assays and colony formation assays, respectively. Invasion and migration were examined by Transwell assays. Flow cytometry assay was used to examine the cell cycle. In addition, xenograft model assays were performed to analyze the growth of endometrial cancer cells in vivo.ResultsOur data showed that HOTAIR expression was higher in endometrial cancer cells and tissues than in normal endometrial tissues. HOTAIR expression was closely related to the tumor stage (P= 0.045), myometrial invasion (P= 0.014), and lymph node metastasis (P= 0.033). The down-regulation of HOTAIR resulted in a significant inhibition of cell proliferation, migration, and invasion and in cell cycle arrest at the G0/G1 phase. Furthermore, HOTAIR depletion significantly suppressed the endometrial cancer tumorigenesis in vivo.ConclusionsThis study is the first to suggest that HOTAIR plays an important role in the carcinogenesis of endometrial cancer. Targeting HOTAIR may be a novel therapeutic strategy for endometrial cancer.


2011 ◽  
Vol 123 (2) ◽  
pp. 442
Author(s):  
T. Dellinger ◽  
K. Planutis ◽  
D. Jandial ◽  
X. Zi ◽  
B. Monk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document