scholarly journals Augmentation Characteristics and Microbial Community Dynamics of Low temperature Resistant Composite Strains LTF-27

Author(s):  
Guoxiang Zheng ◽  
Stopira Yannick Benz Boboua ◽  
Chenyang Zhou ◽  
Jiachen Li ◽  
Weishuai Bi ◽  
...  

Abstract Biogas production in the cold regions of China is hindered by low temperatures, which led to slow lignocellulose biotransformation. Cold-adapted lignocellulose degrading microbial complex community LTF-27 was used to investigate the influence of hydrolysis on biogas production. After 5 days of hydrolysis at 15 ± 1°C, the hydrolysis conversion rate of the straw went up to 22.64%, and the concentration of acetic acid rose to 2,596.56 mg/L. The methane production rates of TS inoculated by LTF-27 reached 204.72 ml/g, which was higher than the biogas (161.34 ml/g), and the CK (121.19 ml/g), the methane production rate of VS increased by 26.88% and 68.92%, respectively. Parabacteroides, Lysinibacillus, and Citrobacter were the main organisms that were responsible for hydrolysis. While numerous other bacteria genera in the gas-producing phase, Macellibacteroides were the most commonly occurring one. Methanosarcina and Methanobacteriaceae contributed 86.25% and 11.80% of the total Archaea abundance during this phase. This study proves the psychrotrophic LTF-27's applicability in hydrolysis and biomass gas production in low temperatures.

2018 ◽  
Vol 61 (3) ◽  
pp. 943-953
Author(s):  
Daniel S. Andersen ◽  
Fan Yang ◽  
Steven L. Trabue ◽  
Brian J. Kerr ◽  
Adina Howe

Abstract. High levels of methane production from swine operations have been associated with foam accumulation in deep-pit manure storage systems. This foam poses both a safety concern (i.e., flash fires) and operational challenges in managing stored manure. Mitigating methane production is one approach to controlling foam accumulation. In this study, swine manures obtained from three deep-pit storage barns in central Iowa were dosed with narasin to evaluate its inhibitory effects on methane and biogas production. Dose rates ranged from 0 to 3.0 mg narasin kg-1 manure. Overall, methane rates were reduced by 9% for each mg of narasin added per kg of manure, and this reduction was effective for up to 25 days. However, the inhibitory effect weakened with time such that no statistical difference in cumulative methane production between samples dosed with narasin and undosed controls could be detected after 120 days of incubation. In addition to methane rates, narasin addition reduced the degradation of total and volatile solids in the manure by 1.9% and 2.6%, respectively, for each mg of narasin added per kg of manure. Additional study treatments included sugar (10 g kg-1 manure) with and without narasin (1.5 mg narasin kg-1 manure). Results from this treatment showed that methane production was initially increased by the sugar addition, but the effect lasted less than six days, at which point cumulative methane production was similar to the control. When treated with both narasin and sugar, the inhibitory effect did not impact gas production during the sugar digestion phase but did reduce methane and biogas production thereafter. The addition of sugar and the rate of narasin addition caused changes to the microbial community as compared to the control. Overall, the results indicated that narasin can be an effective additive for reducing methane emission from swine manure, but further study is needed to recommend dosing frequency and to evaluate how continuous addition of manure impacts narasin effectiveness. Keywords: Biogas, Manure management, Manure treatment, Methane, Narasin, Swine manure, Swine production.


2020 ◽  
Vol 14 (4) ◽  
pp. 551-557
Author(s):  
Yongku Li ◽  
Xiaomin Hu ◽  
Lei Feng

The changing parameters, as the biogas production rate, the methane production rate, the cumulative biogas amount, the cumulative methane amount, the biogas composition, pH etc. in high temperature anaerobic fermentation of chicken manure and stalks were analyzed by experiments with different mass ratios of chicken manure or livestock manure and stalks with a high C/N ratio. The methane production mechanism of high temperature anaerobic digestion of chicken manure and stalks was discussed in detail. It showed that not only the biogas production rates but also the methane production rates of R1–R7 demonstrated the trend of initial increase and then decrease after 50 d of high temperature anaerobic digestion. Besides, the gas production of R1 with pure chicken manure stopped on the 30th d of the reaction. The gas production of other groups R2–R7 also stopped on the corresponding 34th, 36th, 36th, 37th, 37th, and 37th day, respectively. At the end of the reaction, the cumulative biogas amounts and the cumulative methane amounts of R1–R7 were 411.58 and 269.54, 459.91 and 314.41, 425.32 and 294.11, 401.85 and 272.54, 382.63 and 257.07, 363.04 and 218.16, and 257.15 and 160.10 N ml/(g VS). The biogas slurry pH of R1–R7 all demonstrated a trend of initial decrease and then increase, e. g., pH of R2 reached the minimum of 5.94 on the 5th day. pH values of other groups were between 6.01 and 6.39. After the addition of 4 g of sodium bicarbonate on the 7th day, biogas slurry pH of R1–R7 all increased. pH was maintained between 7.16 and 7.44 until the end of the reaction.


Environments ◽  
2019 ◽  
Vol 6 (4) ◽  
pp. 44 ◽  
Author(s):  
John Loughrin ◽  
Nanh Lovanh

Digestion of wastes to produce biogas is complicated by poor degradation of feedstocks. Research has shown that waste digestion can be enhanced by the addition of low levels of aeration without harming the microbes responsible for methane production. This research has been done at small scales and without provision to retain the aeration in the digestate. In this paper, low levels of aeration were provided to poultry litter slurry through a sub-surface manifold that retained air in the sludge. Digestate (133 L) was supplied 0, 200, 800, or 2000 mL/day air in 200 mL increments throughout the day via a manifold with a volume of 380 mL. Digesters were fed 400 g of poultry litter once weekly until day 84 and then 600 g thereafter. Aeration at 200 and 800 mL/day increased biogas production by 14 and 73% compared to anaerobic digestion while aeration at 2000 mL/day decreased biogas production by 19%. Biogas quality was similar in all digesters albeit carbon dioxide and methane were lowest in the 2000 mL/day treatment. Increasing feed to 600 g/week decreased gas production without affecting biogas quality. Degradation of wood disks placed within the digesters was enhanced by aeration.


2019 ◽  
Vol 20 (18) ◽  
pp. 4415 ◽  
Author(s):  
Anna Szafranek-Nakonieczna ◽  
Anna Pytlak ◽  
Jarosław Grządziel ◽  
Adam Kubaczyński ◽  
Artur Banach ◽  
...  

Methanogenesis occurs in many natural environments and is used in biotechnology for biogas production. The efficiency of methane production depends on the microbiome structure that determines interspecies electron transfer. In this research, the microbial community retrieved from mining subsidence reservoir sediment was used to establish enrichment cultures on media containing different carbon sources (tryptone, yeast extract, acetate, CO2/H2). The microbiome composition and methane production rate of the cultures were screened as a function of the substrate and transition stage. The relationships between the microorganisms involved in methane formation were the major focus of this study. Methanogenic consortia were identified by next generation sequencing (NGS) and functional genes connected with organic matter transformation were predicted using the PICRUSt approach and annotated in the KEGG. The methane production rate (exceeding 12.8 mg CH4 L−1 d−1) was highest in the culture grown with tryptone, yeast extract, and CO2/H2. The analysis of communities that developed on various carbon sources casts new light on the ecophysiology of the recently described bacterial phylum Caldiserica and methanogenic Archaea representing the genera Methanomassiliicoccus and Methanothrix. Furthermore, it is hypothesized that representatives of Caldiserica may support hydrogenotrophic methanogenesis.


2018 ◽  
Vol 21 (4) ◽  
pp. 238
Author(s):  
Tuti Haryati ◽  
A. P. Sinurat ◽  
B. Listian ◽  
H. Hamid ◽  
T. Purwadaria

<p class="abstrak2">Cellulose from abundant newspaper waste could be transformed into methane through anaerobic fermentation. This research was carried out to compare the gas production including methane between samples containing feces and waste paper mixture as inoculum and substrate, respectively and added with and without BS4 enzyme. The enzyme was produced in Indonesian Research Institute of Animal Produce (IRIAP) by growing Eupenicillium javanicum BS4 in coconut meals. There were three treatments,  i.e., 30% manure (M30); 15 %  manure + 15 % paper waste  (MP 30); MP30 + 3 mL BS4 enzyme equal to 0.42 U/g dry matter (MPE30) The percentage of waste papers addition in feces was calculated on dry matter (DM) basis and every treatment had five replications. Total gas and methane productions were measured weekly, while dry matter losses were determined during 5 week fermentation. Interactions between treatments and incubation time were analyzed using completely randomized design each week. Kind of substrates influenced both total gas and methane productions during incubation time. Both waste papers and enzyme addition enhanced gas production. The highest total gas and methane productions for five weeks incubation were highly significantly observed (P&lt;0.01) in MP30 and MPE30 compared to M30. Addition of enzyme significantly increased total gas and methane productions in the first week. The highest methane and total gas yield/g dry matter were obtained by BS4 enzyme addition. It was concluded that BS4 enzyme is good in accelerating and increasing the transformation efficiency of waste paper and manure mixture for biogas production.</p><p><strong>Key Words</strong>: Methane, Fibrenolytic-Enzyme, Waste Papers, Cattle Manures</p>


Sign in / Sign up

Export Citation Format

Share Document