scholarly journals High-Solid Loading Enzymatic Hydrolysis of Waste Office Paper for Poly-3-Hydroxybutyrate Production Through Simultaneous Saccharification and Fermentation

Author(s):  
Huda Al-Battashi ◽  
Nallusamy Sivakumar

Abstract Waste paper holds great potential as a substrate for the microbial production of bioplastic (Poly-3-hydroxybutyrate (PHB)). This study aimed to produce PHB by utilizing office paper as a substrate using Cupriavidus necator through batch and fed-batch simultaneous saccharification and fermentation (SSF) approach. For the batch experiment, different loadings of shredded office paper (3, 5 and 10%) with two different pretreatments H2O2 (OPH) and H2O2 and Triton X-100 (OPTH) were carried out. For the fed-batch experiment, paper loading started with 3% and two more additions were made at 36 and 84 h. Both experiments were conducted at 30°C, 200 rpm and pH 7 using 55.5 FPU/g of cellulase and 37.5 CBU/g of β-glucosidase with a fixed amount of nitrogen source. High PHB yield was observed with OPH in all loadings, though the OPHT showed a better hydrolysis. Maximum PHB yield (4.27 g/L) was achieved with 10% OP at six days of fermentation in batch SSF. Whereas, maximum PHB yield (4.19 g/L) was obtained within a shorter time (66 h) in the fed-batch OPH paper. The extracted PHB showed well-matched characteristic features to the standard PHB. Finally, this study proves the feasibility of employing SSF process for PHB production using waste paper as an alternative approach to overcome the shortcoming of the separate hydrolysis and fermentation (SHF) process.

Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2606
Author(s):  
Lacrimioara Senila ◽  
Eniko Kovacs ◽  
Daniela Alexandra Scurtu ◽  
Oana Cadar ◽  
Anca Becze ◽  
...  

In this paper, the production of a second-generation bioethanol from lignocellulosic vineyard cutting wastes was investigated in order to define the optimal operating conditions of the autohydrolysis pretreatment, chlorite delignification and simultaneous saccharification and fermentation (SSF). The autohydrolysis of vine-shoot wastes resulted in liquors containing mainly a mixture of monosaccharides, degradation products and spent solids (rich in cellulose and lignin), with potential utility in obtaining valuable chemicals and bioethanol. The autohydrolysis of the vine-shoot wastes was carried out at 165 and 180 °C for 10 min residence time, and the resulted solid and liquid phases composition were analysed. The resulted liquid fraction contained hemicellulosic sugars as a mixture of alpha (α) and beta (β) sugar anomers, and secondary by-products. The solid fraction was delignified using the sodium chlorite method for the separation of lignin and easier access of enzymes to the cellulosic sugars, and then, converted to ethanol by the SSF process. The maximum bioethanol production (6%) was obtained by autohydrolysis (165 °C), chlorite delignification and SSF process at 37 °C, 10% solid loading, 72 h. The principal component analysis was used to identify the main parameters that influence the chemical compositions of vine-shoot waste for different varieties.


2020 ◽  
Vol 8 (10) ◽  
pp. 1491
Author(s):  
Zhenting Zhang ◽  
Yanan Li ◽  
Jianguo Zhang ◽  
Nan Peng ◽  
Yunxiang Liang ◽  
...  

Lignocellulose comprised of cellulose and hemicellulose is one of the most abundant renewable feedstocks. Lactic acid bacteria have the ability to ferment sugar derived from lignocellulose. In this study, Pediococcus acidilactici PA204 is a lactic acid bacterium with a high tolerance of temperature and high-efficiency utilization of xylose. We developed a fed-batch simultaneous saccharification and fermentation (SSF) process at 37 °C (pH 6.0) using the 30 FPU (filter paper units)/g cellulase and 20 g/L corn steep powder in a 5 L bioreactor to produce lactic acid (LA). The titer, yield, and productivity of LA produced from 12% (w/w) NaOH-pretreated and washed stover were 92.01 g/L, 0.77 g/g stover, and 1.28 g/L/h, respectively, and those from 15% NaOH-pretreated and washed stover were 104.11 g/L, 0.69 g/g stover, and 1.24 g/L/h, respectively. This study develops a feasible fed-batch SSF process for LA production from corn stover and provides a promising candidate strain for high-titer and -yield lignocellulose-derived LA production.


2021 ◽  
Vol 7 (7) ◽  
pp. 547
Author(s):  
Pinpanit Boonchuay ◽  
Charin Techapun ◽  
Noppol Leksawasdi ◽  
Phisit Seesuriyachan ◽  
Prasert Hanmoungjai ◽  
...  

This study aimed to select thermotolerant yeast for bioethanol production from cellulose-rich corncob (CRC) residue. An effective yeast strain was identified as Saccharomyces cerevisiae TC-5. Bioethanol production from CRC residue via separate hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF), and prehydrolysis-SSF (pre-SSF) using this strain were examined at 35–42 °C compared with the use of commercial S. cerevisiae. Temperatures up to 40 °C did not affect ethanol production by TC-5. The ethanol concentration obtained via the commercial S. cerevisiae decreased with increasing temperatures. The highest bioethanol concentrations obtained via SHF, SSF, and pre-SSF at 35–40 °C of strain TC-5 were not significantly different (20.13–21.64 g/L). The SSF process, with the highest ethanol productivity (0.291 g/L/h), was chosen to study the effect of solid loading at 40 °C. A CRC level of 12.5% (w/v) via fed-batch SSF resulted in the highest ethanol concentrations of 38.23 g/L. Thereafter, bioethanol production via fed-batch SSF with 12.5% (w/v) CRC was performed in 5-L bioreactor. The maximum ethanol concentration and ethanol productivity values were 31.96 g/L and 0.222 g/L/h, respectively. The thermotolerant S. cerevisiae TC-5 is promising yeast for bioethanol production under elevated temperatures via SSF and the use of second-generation substrates.


RSC Advances ◽  
2016 ◽  
Vol 6 (42) ◽  
pp. 35771-35777 ◽  
Author(s):  
Y. Wang ◽  
M. Wang ◽  
D. Cai ◽  
B. Wang ◽  
Z. Wang ◽  
...  

An open SSF process using B. coagulans LA1507 introduces an effective way to produce l-lactic acid from abundant SSB.


Sign in / Sign up

Export Citation Format

Share Document