scholarly journals Poly(amidoamine) dendrimer modified superparamagnetic nanoparticles as an efficient adsorbent for Cr(VI) removal: Effect of high-generation dendrimer on adsorption performance

Author(s):  
Can Cui ◽  
Yadian Xie ◽  
Jiaojiao Niu ◽  
Hailiang Hu ◽  
Sen Lin

Abstract Heavy metal ions pollution is one of the most dangerous and critical threats to human health and environment. In this work, three different generations of PAMAM dendrimer decorated on magnetic Fe 3 O 4 composites (Fe 3 O 4 @SiO 2 –G1, Fe 3 O 4 @SiO 2 –G3, Fe 3 O 4 @SiO 2 –G5) were fabricated and characterized by FTIR, XRD, TEM, and TGA. The obtained composites were used for Cr(VI) removal. Batch adsorption studies showed that the adsorption reached equilibrium within 60 min, and the optimal pH was 3.0. The result of adsorption kinetics was simulated by the pseudo–second-order model. The adsorption equilibrium isotherm was well fitted with the Langmuir adsorption model. Furthermore, thermodynamics calculations revealed that the adsorption process was endothermic and spontaneous. Importantly, adsorption capacity of Cr(VI) obey the sequence of Fe 3 O 4 @SiO 2 –G1<Fe 3 O 4 @SiO 2 –G5<Fe 3 O 4 @SiO 2 –G3, 3 generation of PAMAM (3G) is the optimal for adsorption capacity of Cr(VI). The maximum theoretical Cr(VI) adsorption capacity ( q m ) of Fe 3 O 4 @SiO 2 –G3 was 334.45 mg/g, and removal ration remained above 89.5% after five cycles of adsorption–desorption. Thus, Fe 3 O 4 @SiO 2 –G3 is predicted to be an efficient adsorbent for the adsorption of Cr(VI) from aqueous solution, and the obtained results can help in the generation optimization during fabrication of dendrimer modified adsorbents.

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2295
Author(s):  
Marwa El-Azazy ◽  
Ahmed S. El-Shafie ◽  
Hagar Morsy

Biochars (BC) of spent coffee grounds, both pristine (SCBC) and impregnated with titanium oxide (TiO2@SCBC) were exploited as environmentally friendly and economical sorbents for the fluroquinolone antibiotic balofloxacin (BALX). Surface morphology, functional moieties, and thermal stabilities of both adsorbents were scrutinized using SEM, EDS, TEM, BET, FTIR, Raman, and TG/dT analyses. BET analysis indicated that the impregnation with TiO2 has increased the surface area (50.54 m2/g) and decreased the pore size and volume. Batch adsorption experiments were completed in lights of the experimental set-up of Plackett-Burman design (PBD). Two responses were maximized; the % removal (%R) and the adsorption capacity (qe, mg/g) as a function of four variables: pH, adsorbent dosage (AD), BALX concentration ([BALX]), and contact time (CT). %R of 68.34% and 91.78% were accomplished using the pristine and TiO2@SCBC, respectively. Equilibrium isotherms indicated that Freundlich model was of a perfect fit for adsorption of BALX onto both adsorbents. Maximum adsorption capacity (qmax) of 142.55 mg/g for SCBC and 196.73 mg/g for the TiO2@SCBC. Kinetics of the adsorption process were best demonstrated using the pseudo-second order (PSO) model. The adsorption-desorption studies showed that both adsorbents could be restored with the adsorption efficiency being conserved up to 66.32% after the fifth cycles.


2015 ◽  
Vol 5 (1) ◽  
pp. 45
Author(s):  
Tchuifon Tchuifon Donald Raoul ◽  
Nche George Ndifor-Angwafor ◽  
Ngakou Sadeu Christian ◽  
Kamgaing Théophile ◽  
Ngomo Horace Manga ◽  
...  

<p>The present study is based on the adsorption of cadmium (II) ions on rice husk and egussi peeling, unmodified and modified with nitric acid in aqueous solution, using batch technique. It was carried out as a function of contact time, dosage, pH and initial concentration. The equilibrium time was achieved within 25 minutes for unmodified rice husk (Glu NT) and 20 minutes for unmodified egussi peeling (Cuc NT) with an adsorbed quantity of 13.18 mg/g. In the case of modified materials, we obtained 15 minutes for modified rice husk (Glu HNO3) and 10 minutes for modified egussi peeling (Cuc HNO3) with an adsorbed quantity of 18.77 mg/g. The maximum biosorption occurred at pH 5.5 for all biosorbents. The adsorbent mass for maximum adsorption was 0.4 g giving an adsorption capacity of 62.02 % for unmodified adsorbents. In the case of modified adsorbents, the minimal mass at which maximum adsorption occurred was 0.4 g giving an adsorption capacity of 98.33 % and 0.6 g giving an adsorption capacity of 98.33 % for modified rice husk and egussi peeling respectively. The adsorbent/adsorbate equilibrium was well described by the pseudo-second order kinetic model and by Langmuir’s and Freundlich adsorption model. This models showed that the adsorption of cadmium (II) is a chemisorption process.</p>


2018 ◽  
Vol 78 (7) ◽  
pp. 1615-1623 ◽  
Author(s):  
N. Priyantha ◽  
H. K. W. Sandamali ◽  
T. P. K. Kulasooriya

Abstract Although rice husk (RH) is a readily available, natural, heavy metal adsorbent, adsorption capacity in its natural form is insufficient for certain heavy metal ions. In this context, the study is based on enhancement of the adsorption capacity of RH for Cu(II). NaOH modified rice husk (SRH) shows higher extent of removal for Cu(II) ions than that of heated rice husk (HRH) and HNO3 modified rice husk (NRH). The extent of removal of SRH is increased with the concentration of NaOH, and the optimum NaOH concentration is 0.2 mol dm−3, used to modify rice husk for further studies. The surface area of SRH is 215 m2 g−1, which is twice as much as that of HRH according to previous studies. The sorption of Cu(II) on SRH obeys the Langmuir adsorption model, leading to the maximum adsorption capacity of 1.19 × 104 mg kg−1. Kinetics studies show that the interaction of Cu(II) with SRH obeys pseudo second order kinetics. The X-ray fluorescence spectroscopy confirms the adsorption of Cu(II) on SRH, while desorption studies confirm that Cu(II) adsorbed on SRH does not leach it back to water under normal conditions.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Shaojun Huang ◽  
Chengzhang Ma ◽  
Yaozu Liao ◽  
Chungang Min ◽  
Ping Du ◽  
...  

Poly(1-amino-5-chloroanthraquinone) (PACA) nanofibrils were applied as novel nanoadsorbents for highly toxic mercury removal from aqueous solutions. A series of batch adsorption experiments were conducted to study the effect of adsorbent dose, pH, contact time, and metal concentration on Hg(II) uptake by PACA nanofibrils. Kinetic data indicated that the adsorption process of PACA nanofibrils for Hg(II) achieved equilibrium within 2 h following a pseudo-second-order rate equation. The adsorption mechanism of PACA nanofibrils for Hg(II) was investigated by Fourier transform-infrared (FT-IR) spectra and X-ray photoelectron spectroscopy (XPS) analyses. The adsorption isotherm of Hg(II) fitted well the Langmuir model, exhibiting superb adsorption capacity of 3.846 mmol of metal per gram of adsorbent. Lastly, we found out that the as-synthesized PACA nanofibrils are efficient in Hg(II) removal from real wastewater. Furthermore, five consecutive adsorption-desorption cycles demonstrated that the PACA nanofibrils were suitable for repeated use without considerable changes in the adsorption capacity.


2016 ◽  
Vol 75 (5) ◽  
pp. 1051-1058 ◽  
Author(s):  
Qiujin Jia ◽  
Wanting Zhang ◽  
Dongping Li ◽  
Yulong Liu ◽  
Yuju Che ◽  
...  

Hydrazinolyzed cellulose-graft-polymethyl acrylate (Cell-g-PMA-HZ), an efficient adsorbent for removal of Cd(II) and Pb(II) from aqueous solution, has been prepared by ceric salt-initiated graft polymerization of methyl acrylate from microcrystalline cellulose surface and subsequent hydrazinolysis. The influences of initial pH, contact time, and temperature on adsorption capacity of Cell-g-PMA-HZ as well as adsorption equilibrium, kinetic and thermodynamic properties were examined in detail. As for Cd(II) adsorption, kinetic adsorption can be explained by pseudo-second-order, while adsorption isotherm fits well with Langmuir isotherm model, from which maximum equilibrium adsorption capacity can be derived as 235.85 mg g−1 at 28 °C. Further thermodynamic investigation indicated that adsorption of Cd(II) by adsorbent Cell-g-PMA-HZ is endothermic and spontaneous under studied conditions. On the other hand, isotherm of Pb(II) adsorption fits well with Freundlich isotherm model and is more likely to be a physical-adsorption-dominated process. Consecutive adsorption–desorption experiments showed that Cell-g-PMA-HZ is reusable with satisfactory adsorption capacity.


2018 ◽  
Vol 78 (4) ◽  
pp. 803-813
Author(s):  
Tao Chen ◽  
Bo Yan ◽  
Da-Mao Xu ◽  
Li-li Li

Abstract In the present work, an attractive and creative adsorbent derived from sewage sludge was freshly fabricated via pyrolysis technology, followed by modification for improving the absorptive ability. First, the (NH4)2S2O8 modified pyrolytic sludge (MSAP) was selected from 19 modified pyrolytic sludges for the highest removal efficiency and adsorption capacity for methylene blue (MB). Then, the adsorption performance for MB of MSAP was compared systematically with the pristine adsorbent (MSDW) by batch adsorption experiments. The main conclusions were that the adsorption process was better fitted with the Langmuir model, and the maximum adsorption capacity (qmax) of MSAP was observed to be 149.05 mg g−1. Moreover, the adsorption kinetics data showed a good fit with the pseudo second order model; when the addition of MSAP was 1.0 g·L−1, the rate constant was 0.05 g·mg−1·min−1, which was far greater than that of the other modified adsorbents.


2015 ◽  
Vol 1130 ◽  
pp. 685-688
Author(s):  
Rui Yi Fan ◽  
Qing Ping Yi ◽  
Qing Lin Zhang ◽  
Zheng Rong Luo

A biosorbent was prepared by treating the persimmon (Diospyros kaki Thunb.) fallen leaves with sodium hydroxide (NaOH). The NaOH concentration and stirring period for the preparation of the biosorbent were adjusted to optimise the Cd(I) adsorption capacity of the biosorbents. Removal of highly toxic Cadmium metal ions from water system using the optimal biosorbent named ‘NPFL’ was investigated using a mimic industrial column. The result showed that NPFL could remove Cd(II) in large quantities from aqueous solution with coexisting metal ions. The raw material, NPFL and Cd(II) loaded NPFL were characterized by SEM-EDS. The reusability of NPFL was also studied by batch adsorption-desorption test.


SAINTIFIK ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 104-115
Author(s):  
Agusriyadin Agusriyadin

Penelitian ini bertujuan untuk menguji kemampuan AK dan AKPM dalam mengadsorpsi ion Cu (II), pengaruh parameter adsorpsi dan mekanisme adsorpsi. AK dan AKP Madsorben dibuat dari residu ampas kelapa. Adsorben dikarakterisasi dengan FTIR, SEM dan EDS. Pengaruh parameter adsorpsi seperti pH awal, dosis adsorben, waktu kontak dan konsentrasi ion Cu (II) awal diperiksa untuk menentukan kondisi optimum serapan tembaga (II). Ion Cu (II) yang teradsorpsi diukur berdasarkan pada konsentrasi Ion Cu (II) sebelum dan sesudah adsorpsi menggunakan metode AAS. Hasil karakterisasi menunjukkan bahwa struktur pori dan gugus fungsi tersedia pada permukaan adsorben. Menurut percobaan efek pH, kapasitas adsorpsi maksimum dicapai pada pH 7. Waktu kontak optimal dan konsentrasi tembaga awal (II) ditemukan masing-masing pada 120 menit dan 100 mg L-1. Data eksperimental sesuai dengan model kinetik orde dua orde dua, dan Langmuir isoterm adsorpsi yang diperoleh paling sesuai dengan data adsorpsi. Kapasitas adsorpsi maksimum adsorben ditemukan menjadi 4,73 dan 6,46 mg g-1 pada kondisi optimal. The results of characterization showed that the pore structure and the functional groups were available on adsorbent surface. According to the pH effect experiments, the maximum adsorption capacity was achieved at pH 7. Optimum contact time and initial copper(II) concentration were found at 120 min and 100 mg L-1, respectively. The experimental data were comply with the pseudo-second-order kinetic model, and Langmuir adsorption isotherm obtained best fitted the adsorption data. The maximum adsorption capacity of the adsorbents was found to be 4.73 and 6.46 mg g-1 at optimum conditions.


Author(s):  
Xiaochun Yin ◽  
Nadi Zhang ◽  
Meixia Du ◽  
Hai Zhu ◽  
Ting Ke

Abstract In this paper, a series of bio-adsorbents (LR-NaOH, LR-Na2CO3 and LR-CA) were successfully prepared by modifying Licorice Residue with NaOH, Na2CO3 and citric acid, which were used as the adsorbents to remove Cu2+ from wastewater. The morphology and structure of bio-adsorbents were characterized by Fourier Transform Infrared, SEM, TG and XRD. Using static adsorption experiments, the effects of the adsorbent dosage, the solution pH, the adsorption time, and the initial Cu2+ concentration on the adsorption performance of the adsorbents were investigated. The results showed that the adsorption process of Cu2+ by the bio-adsorbents can be described by pseudo-second order kinetic model and the Langmuir model. The surface structure of the LR-NaOH, LR-Na2CO3 and LR-CA changed obviously, and the surface-active groups increased. The adsorption capacity of raw LR was 21.56 mg/g, LR-NaOH, LR- Na2CO3 significantly enhanced this value up to 43.65 mg/g, 43.55 mg/g, respectively. After four adsorption-desorption processes, the adsorption capacity of LR-NaOH also maintained about 73%. Therefore, LR-NaOH would be a promising adsorbent for removing Cu2+ from wastewater, and the simple strategy towards preparation of adsorbent from the waste residue can be as a potential approach using in the water treatment.


2019 ◽  
Vol 80 (7) ◽  
pp. 1357-1366
Author(s):  
Jianming Liu ◽  
Runying Bai ◽  
Junfeng Hao ◽  
Bowen Song ◽  
Yu Zhang ◽  
...  

Abstract This study investigated a magnetically recycled modified polishing powder (CMIO@PP) as an adsorbent of phosphate; the CMIO@PP was synthesized by combining the modified La/Ce-containing waste polishing powder with CaO2-modified Fe3O4 (CMIO). Results indicate that the CMIO@PP nanocomposite presents a crystal structure comprising La (OH)3, Ce (OH)3, and Fe3O4, and that CMIO is uniformly dispersed in the modified polishing powder. The CMIO@PP (1:3) is a suitable choice considering its magnetism and adsorption capacity. The magnetic adsorbent exhibits a high adsorption capacity of 53.72 mg/g, a short equilibrium time of 60 min, and superior selectivity for phosphate. Moreover, the adsorbent strongly depends on the pH during the adsorption process and maintains a large adsorption capacity when the pH level is between 2 and 6. The adsorption of phosphate by the CMIO@PP (1:3) accords with the Langmuir isotherm model, and the adsorption process follows the pseudo-second order model. Meanwhile, adsorption–desorption experiments show that the adsorbent could be recycled a few times and that a high removal efficiency of phosphate from civil wastewater was achieved. Finally, mechanisms show that the adsorption of phosphate by the CMIO@PP (1:3) is mainly caused by electrostatic attraction and ligand exchange.


Sign in / Sign up

Export Citation Format

Share Document