scholarly journals Application of electric spring in coal mine power supply

2020 ◽  
Author(s):  
Xi Zhang ◽  
Zheng Zheng

Abstract With the continuous improvement of mine automation, coal mines have higher and higher requirements for the quality of power supply voltage, and voltage fluctuations have become one of the factors that threaten the safe operation of coal mines. In order to solve this problem, this article uses the electric spring (ES) in the coal mine power supply system. First, it analyzes the working principle of the electric spring. Next, aiming at the deficiencies of the resonance control strategy, a compound control strategy in which quasi-proportional resonance control (QPR) and repetitive control are parallel is proposed. The introduction of repetitive control can suppress the periodic disturbance of the power grid, effectively improve the steady-state accuracy, and reduce system harmonics. Then, the design method of repeated controller parameters is studied in detail. Finally, MATLAB/Simulink is used to build a simulation model, and dSPACE is used as the control core to build an ES experiment platform. Simulation and experimental results verify the correctness and effectiveness of the proposed control algorithm, and point out that the electric spring can ensure the voltage stability of key electrical equipment and provide a reliable guarantee for the safe production of the mine.

2011 ◽  
Vol E94-C (6) ◽  
pp. 1072-1075
Author(s):  
Tadashi YASUFUKU ◽  
Yasumi NAKAMURA ◽  
Zhe PIAO ◽  
Makoto TAKAMIYA ◽  
Takayasu SAKURAI

2016 ◽  
Vol E99.C (10) ◽  
pp. 1219-1225
Author(s):  
Masahiro ISHIDA ◽  
Toru NAKURA ◽  
Takashi KUSAKA ◽  
Satoshi KOMATSU ◽  
Kunihiro ASADA

1993 ◽  
Vol 29 (15) ◽  
pp. 1324 ◽  
Author(s):  
L.E. Larson ◽  
M.M. Matloubian ◽  
J.J. Brown ◽  
A.S. Brown ◽  
M. Thompson ◽  
...  

Author(s):  
F. P. Shkrabets

The increase in the capacity of cleaning and construction vehicles for highcapacity and energy-intensive mines calls for an increase in the  supply voltage of cleaning and tunneling combines, as well as  transport systems: from a voltage of 660 V switched to 1140 V, and  now to 3300 V. This allows improving technical and economic  indicators for clearing and access areas, as well as improving the reliability of local Power Supply Systems (PSS). However, this  trend prevents the supply of underground electric networks with a  voltage of 6 kV, in connection with which the problem arises of  increasing the voltage of supply networks. To date, it has become  possible to apply the 10 kV voltage to the operation, which is most  acceptable for the use of electrical equipment for electrical networks  and protection devices. Leading educational, research and design  organizations were engaged in research on this issue. An analysis of the results of the research showed that switching to 10 kV voltage is  justified and timely. At the same time, 35 kV voltage is not removed  from the agenda, which is technically feasible and economically  justified, but there are problems with the safety of its operation in  underground workings, which requires appropriate refinement. This  level of voltage will improve the quality of electricity.Conclusions: 1. Application of 35 kV voltage in the underground power supply system of coal and ore mines is advisable at a depth of more than 1000 m with a maximum load of at least 1000 kVA at the  level of the stem cables.2. Application of 35 kV voltage in underground electrical networks will allow to significantly improve the quality indicators of voltage,  reliability, and economy of the system due to the current unloading  of the most important element of SES, such as stem cables.3. Analysis of the main parameters and characteristics of electrical mine electrical equipment gives reason to believe that it allows  implementing a trend of 35 kV deep input to deep horizons of mines  (mines) and placement of 35/6 kV substations on working horizons.


2020 ◽  
Vol 67 (5) ◽  
pp. 811-817
Author(s):  
G. Torrens ◽  
A. Alheyasat ◽  
B. Alorda ◽  
S. Barcelo ◽  
J. Segura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document