scholarly journals Long-Term Bacterial Fertilizer Application Improves Eucalyptus Growth and Yields through Altering Soil Quality

2020 ◽  
Author(s):  
Han Ren ◽  
Xiaohong Qin ◽  
Chengqun Lv ◽  
Víctor Fernández-García ◽  
Chuan Xie

Abstract Sludge and plant growth-promoting rhizobacteria (PGPR) are widely used to improve soil quality and plant growth. In this study we aim to determine the responses of soil enzyme activities, soil nutrient contents and plant growth to fertilization with sludge and PGPR (Bacillus megaterium strain DU07). To achieve this goal, we planted bare-root eucalyptus seedlings with soil amended with (1) filtered sludge from sugar factory (FS), (2) filtered sludge + PGPR (BF) and (3) non-amended soil (control). Soil properties (soil nutrients and soil extracellular enzymatic activities) and eucalyptus growth (diameter, height and stem volume) were studied 3, 6, 9 and 12 months after treatments. Results indicated that BF significantly increased plant height, diameter, and stem volume after the sixth month. Principal component analysis (PCA) showed that soil quality was significantly increased by BF during our trial period, especially after the ninth month. The pooled regression model indicated that soil quality significantly and positively affected eucalyptus yield, whereas soil TN was negatively and significantly related to plant stem volume. Hence, our study indicates that the application of a bacterial fertilizer increases plant growth and yield via increasing soil quality. Thus, our findings suggest that PGPR amendments could be useful as bio-fertilizer to improve soil-plant interactions in eucalyptus plantations.

2017 ◽  
Vol 3 (4) ◽  
pp. 187 ◽  
Author(s):  
Arief Pambudi ◽  
Nita Noriko ◽  
Endah Permata Sari

<p><em>Abstrak -</em><strong> </strong><strong>Produksi padi di Indonesia setiap tahun mengalami peningkatan, namun peningkatan ini belum mampu memenuhi kebutuhan nasional sehingga impor masih harus dilakukan. Salah satu masalah dalam produksi beras adalah penggunaan pupuk berlebih yang tidak hanya meningkatkan biaya produksi, namun juga merusak kondisi tanah. Aplikasi bakteri tanah sebagai Plant <em>Growth Promoting Rhizobacteria</em> (PGPR) dapat menjadi salah satu solusi terhadap masalah ini. Penelitian ini bertujuan untuk mengisolasi bakteri tanah dari 3 lokasi sawah daerah Bekasi, membandingkan keberadaan total bakteri pada ketiga lokasi tersebut,  dan melakukan karakterisasi isolat berdasarkan karakter yang dapat memicu pertumbuhan tanaman. Dari ketiga lokasi, diperoleh total 59 isolat dan 5 diantaranya berpotensi sebagai PGPR karena kemampuan fiksasi Nitrogen, melarutkan Fosfat, katalase positif, dan motil. Dari ketiga lokasi pengambilan sampel, BK1 memiliki jumlah total bakteri terendah karena aplikasi pemupukan dan pestisida berlebih yang ditandai tingginya kadar P total, serta tingginya residu klorpirifos, karbofuran, dan paration. Kondisi fisik tanah BK1 juga didominasi partikel liat yang menyebabkan tanah menjadi lebih padat. Peningkatan jumlah penggunaan pupuk tidak selalu diikuti peningkatan produktivitas tanaman.</strong></p><p> </p><p><strong><em>Kata Kunci</em></strong><strong><em> </em></strong>- <em>Bakteri tanah, Rhizosfer sawah, PGPR, Pupuk Hayati</em></p><p><strong> </strong></p><p><em>Abstract</em><strong> - </strong><strong>Rice production in Indonesia has increased annually, but this increase has not reached national demand,so imports still done. </strong><strong>One of the problems in rice production is the use of excessive fertilizers that not only increase production costs, but also decreased the soil conditions. The application of soil bacteria as Plant Growth Promoting Rhizobacteria (PGPR) can be the one solution to face this problem. The objective of this study was isolate soil bacteria from 3 locations of rice field in Bekasi, compare the total bacteria in the three locations, and characterize isolates based on the character that can promote plant growth. From three locations, a total of 59 isolates were obtained and 5 of them were potential as a PGPRs due to its Nitrogen fixation activity, Phosphate solubilization, positive catalase, and motility. From three sampling sites, BK1 has the lowest TPC value because of excessive  fertilizers and pesticides application which indicated by high total P levels, and also high chlorpyrifos, carbofuran and paration residues. The physical condition of BK1 soil is also dominated by clay particles which causes the soil more solid. Increasing of fertilizer application is not always followed by increased plant productivity.</strong></p><p><strong> </strong></p><p><strong><em>Keywords</em></strong> - <em>Biofertilizer, PGPR, Rice field rhizosphere, Soil Bacteria</em></p>


2021 ◽  
Vol 2107 (1) ◽  
pp. 012067
Author(s):  
Ong Boon Chin ◽  
Aimi Salihah Abdul Nasir ◽  
Ooi Wei Herng ◽  
Erdy Sulino Mohd Muslim Tan

Abstract Harumanis mango is one of the economic sources of the Perlis state. It has a sweeter taste compared to other mangoes. However, the Harumanis mango tree required specific weather, soil nutrient contents and pH level. This makes the farmer does not know the health condition of their Harumanis mango tree. Therefore, this project aims to provide the best method of leaves detection to the farmer. The leaves image samples are collecting from the orchard and undergo pre-processing. Then the input image was converted into grayscale with principal component analysis (PCA). Wavelet transformation was implemented to increase the discriminability of the segmentation technique for separating the leaf and background. The leaf segmentation is done by using Phansalkar and Sauvola thresholding techniques. After that, fill hole and area opening techniques are implementing to reduce noise in the image. These two thresholding techniques are comparing and discuss with their segmentation performance. Overall, Phansalkar thresholding has produced better performance in segmenting healthy and unhealthy Harumanis mango leaves with sensitivity, specificity and accuracy of 92.05%, 81.37% and 83.51%, respectively.


2019 ◽  
Vol 14 (2) ◽  
pp. 101-107 ◽  
Author(s):  
Azhar Hussain ◽  
Maqshoof Ahmad ◽  
Muhammad Zahid Mumtaz ◽  
Farheen Nazli ◽  
Muhammad Aslam Farooqi ◽  
...  

Organic amendments improve the soil quality and plant productivity as well as help in the establishment of introduced bacteria. The present study was conducted to evaluate the interactive impact of organic amendments and plant growth promoting rhizobacteria strain Alcaligenes sp. AZ9 to improve maize productivity and soil quality. organic amendments including rock phosphate enriched compost (RPEC), biochar, and humic acid were applied in soil along with and without Alcaligenes sp. AZ9. The results revealed that the sole application of organic amendments along with Alcaligenes sp. AZ9 showed increase in growth and grain yield of maize. However, a combined application of organic amendments (RPEC, biochar, and humic acid) along with Alcaligenes sp. AZ9 showed maximum increase in plant height up to 14%, shoot dry biomass up to 30%, 1000-grains weight up to 10%, grain yield up to 31%, stover yield up to 34%, and potassium (K) concentration in grains up to 12% as compared to absolute control. The increase in nitrogen (N) and phosphorus (P) concentration in grains was non-significant over control. This treatment also improved soil biological attributes in terms of the bacterial population up to 60%, microbial biomass carbon up to 22%, soil organic carbon up to 29%, and saturation percentage of soil up to 14% as compared to control. It can be concluded that the application of organic amendments improved establishment of introduced bacteria, which could be effective in improving maize growth and yield as well as soil health.


2020 ◽  
pp. 1186-1194
Author(s):  
Roberta Mendes dos Santos ◽  
Everlon Cid Rigobelo

The search for plant growth-promoting rhizobacteria is an ongoing need for the development of new bioinoculants for use in various crops, including sugarcane. Bacterial strains with various plant growth-promoting properties can contribute to sustainable agricultural production. The present study aimed to isolate, characterize and select sugarcane rhizobacteria from six different varieties through principal components analysis. This study selected 167 bacterial strains with the ability to fix nitrogen, produce indolacetic acid, exhibit cellulolytic activity, and solubilize phosphate and potassium were isolated. Of these 167 bacterial strains, seven were selected by principal component analysis and identified as belonging to the genera Staphylococcus, Enterobacter, Bacillus and Achromobacter. Bacillus thuringiensis IP21 presented higher potential for nitrogen fixation and CaPO4 and AlPO4 solubilization and a lower potential for K solubilization in sugarcane. Enterobacter asburiae IP24 was efficient in indolacetic acid production and CaPO4 and FePO4 solubilization and inefficient for Araxá apatite solubilization.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2065
Author(s):  
Hammad Anwar ◽  
Xiukang Wang ◽  
Azhar Hussain ◽  
Muhammad Rafay ◽  
Maqshoof Ahmad ◽  
...  

Plant growth-promoting rhizobacteria with multiple growth-promoting traits play a significant role in soil to improve soil health, crop growth and yield. Recent research studies have focused on the integration of organic amendments with plant growth-promoting rhizobacteria (PGPR) to enhance soil fertility and reduce the hazardous effects of chemical fertilizers. This study aims to evaluate the integrated application of biochar, compost, fruit and vegetable waste, and Bacillus subtilis (SMBL 1) to soil in sole application and in combined form. The study comprises eight treatments—four treatments without inoculation and four treatments with SMBL 1 inoculation in a completely randomized design (CRD), under factorial settings with four replications. The results indicate that the integrated treatments significantly improved okra growth and yield compared with sole applications. The integration of SMBL 1 with biochar showed significant improvements in plant height, root length, leaf chlorophyll a and b, leaf relative water content, fruit weight, diameter and length by 29, 29, 50, 53.3, 4.3, 44.7 and 40.4%, respectively, compared with control. Similarly, fruit N, P and K contents were improved by 33, 52.7 and 25.6% and Fe and Zn in shoot were 37.1 and 35.6%, respectively, compared with control. The results of this study reveal that the integration of SMBL 1 with organic amendments is an effective approach to the sustainable production of okra.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dominique Comeau ◽  
Carole Balthazar ◽  
Amy Novinscak ◽  
Nadia Bouhamdani ◽  
David L. Joly ◽  
...  

Plant growth-promoting rhizobacteria (PGPR) deploy several mechanisms to improve plant health, growth and yield. The aim of this study was to evaluate the efficacy of two Pseudomonas spp. strains and three Bacillus spp. strains used as single treatments and in consortia to improve the yield of Cannabis sativa and characterize the impact of these treatments on the diversity, structure and functions of the rhizosphere microbiome. Herein, we demonstrate a significant C. sativa yield increase up to 70% when inoculated with three different Pseudomonas spp./Bacillus spp. consortia but not with single inoculation treatments. This growth-promoting effect was observed in two different commercial soil substrates commonly used to grow cannabis: Promix and Canna coco. Marker-based genomic analysis highlighted Bacillus spp. as the main modulator of the rhizosphere microbiome diversity and Pseudomonas spp. as being strongly associated with plant growth promotion. We describe an increase abundance of predicted PGPR metabolic pathways linked with growth-promoting interactions in C. sativa.


Sign in / Sign up

Export Citation Format

Share Document