scholarly journals Simultaneous Wireless Information and Power Transfer using Green Communication Based on 5G Wireless Communication

Author(s):  
Ahmed Zohair Ibrahim ◽  
P Prabu ◽  
T Senthilnathan ◽  
Thangavel Renukadevi

Abstract Simultaneous wireless information and power transfer (SWIPT) has given new opportunities for dealing with the energe shortage problem in wireless networks.Green transmission for 5G cellular networks of mobile cloud access networks based on SWIPT is being examined. Considering SWIPT as a future potential solution for increasing the battery life, this technique improves energy efficiency (EE). One of the technologies is wireless communication to transfter the power used to give sufficient resources to energy-constrained networks that have consequences for 5G and the internet of things (IoT), energy efficiency, co-operative communication and suitable are supported by the SWIPT. To enhance the capacity, data rate improvement, and better performance of quality of services of further networks. In addition to these criteria, it is also our moral responsibility to protect the environment of wireless networks by lowering power usage. As a result, green communication is a critical requirement. We looked at a variety of strategies for power optimization in the impending 5G network in this article. The utilization of relays and microcells to enhance the network’s energy efficiency is the main focus. The many relaying scenarios for next-generation networks have been discussed.

2021 ◽  
Vol 11 (4) ◽  
pp. 4082-4095
Author(s):  
G. Chenna Kesava Reddy ◽  
Dr.A.A. Ansari ◽  
Dr.S. China Venkateswarlu

Energy efficiency is a significant issue in portable wireless networks since the battery life of versatile terminals is restricted. Protection of battery power has been tended to utilizing numerous procedures. Wireless sensor networks (WSNs), framed by various little gadgets fit for detecting, processing, and wireless correspondence are arising as a progressive innovation, with applications in different territories. The novel highlights of wireless sensor networks have carried new difficulties and issues to the field of conveyed and communitarian data preparing. In the light of the importance of reducing operating consumpt and maintaining cellular network profitability, energy efficiency in cell networks has received a crucial consideration from both scholars and the business, despite the fact that these networks are “green communication.” Since the base station is the most important energy buyer in the business, efforts have been undertaken to review the use of the base station and to identify ways to energy efficiency improvements. The trade-offs between energy utilization and throughput, under nearby just as under helpful detecting, are portrayed. The Energy efficient tradeoffs have been arranged dependent on every convention layer and examined its effect in the organization energy efficiency.


Author(s):  
Hamza Mohammed Ridha Al-Khafaji ◽  
Hasan Shakir Majdi

<p>This paper scrutinizes the influence of deployment scenarios on the energy performance of fifth-generation (5G) network at various backhaul wireless frequency bands. An innovative network architecture, the hybrid centric-distributed, is employed and its energy efficiency (EE) model is analyzed. The obtained results confirm that the EE of the 5G network increases with an increasing number of small cells and degrades with an increasing frequency of wireless backhaul and radius of small cells regardless of the network architectures. Moreover, the hybrid centric-distributed architecture augments the EE when compared with the distributed architecture.</p>


Author(s):  
Mark S. Leeson ◽  
Sahil Patel

Underwater Wireless Sensor Networks (UWSNs) are used in applications such as mineral exploration and environmental monitoring, and must offer reliability and energy efficiency. These are related to each other in the sense that the former requires error-correction which in turn requires energy, consuming battery life in an environment where battery replacement and recharging are difficult. This chapter thus addresses the energy efficiency of three suitable error correction methods for UWSNs, namely Automatic Repeat Request (ARQ), Forward Error Correction (FEC) and Network Coding (NC). The performance of the schemes as a function of transmission distance is determined for various packet sizes by using models of attenuation and noise that represent the underwater environment. ARQ offers the lowest efficiency and NC the highest but there is a distance at which FEC becomes the best option rather than NC suggesting a hybrid FEC/NC method.


Author(s):  
Christos J Bouras ◽  
Apostolos Gkamas ◽  
Spyridon Aniceto Katsampiris Salgado ◽  
Nikolaos Papachristos

This chapter presents the design and development of a search and rescue (SAR) system, for the location and provision of aid to people who are missing or in imminent danger, especially those belonging to population groups with a particularly high probability of getting lost. With the use of low-power wide area network (LPWAN) technology, such as narrow band internet of things (NB-IoΤ), the authors are able to provide search and rescue solutions for individuals, especially those belonging to groups of people who are more likely to get lost. The central part of the system is a modular “wearable (portable)” device, while in the framework of the implementation of this system, the authors have seriously taken into consideration the aspects of energy efficiency in order to provide better battery life.


Sign in / Sign up

Export Citation Format

Share Document