scholarly journals Atomically resolved tomographic reconstruction of nanoparticles from Single Projection: influence of amorphous carbon support

2020 ◽  
Author(s):  
Pritam Banerjee ◽  
Chiranjit Roy ◽  
Subhra Kanti De ◽  
Antonio J. Santos ◽  
Francisco M. Morales ◽  
...  

Abstract Nanoparticles have a wide range of applications due to their unique geometry and arrangement of atoms. For a precise structure-property correlation, information regarding atomically resolved 3D structures of nanoparticles is utmost beneficial. Though modern aberration-corrected transmission electron microscopes can resolve atoms with sub-angstrom resolution, an atomic-scale 3D reconstruction of nanoparticle is a challenge using tilt series tomography due to high radiation damage. Instead, inline 3D holography based tomographic reconstructions from single projection registered at low electron doses are more suitable for defining atoms dispositions at nanostructures. Nanoparticles are generally supported on amorphous carbon film for TEM experiments. However, neglecting the influence of carbon film on the tomographic reconstruction of the nanoparticle may lead to ambiguity. In order to address this issue, the effect of amorphous carbon support was quantitatively studied using simulations and experiments.

Author(s):  
Karsten Tillmann ◽  
Juri Barthel ◽  
Lothar Houben

The FEI Titan G3 50-300 PICO is a unique fourth generation transmission electron microscope which has been specifically designed for the investigation of a wide range of solid state phenomena taking place on the atomic scale and thus necessitating true atomic resolution analysis capabilities. For these purposes, the FEI Titan G3 50-300 PICO is equipped with a Schottky type high-brightness electron gun (FEI X-FEG), a monochromator unit, and a Cs probe corrector (CEOS DCOR), a Cs-Cc achro-aplanat image corrector (CEOS CCOR+), a double biprism, a post-column energy filter system (Gatan Quantum 966 ERS) as well as a 16 megapixel CCD system (Gatan UltraScan 4000 UHS). Characterised by a TEM and STEM resolution well below 50 pm at 200 kV, the instrument is one of the few chromatically-corrected high resolution transmission electron microscopes in the world. Typical examples of use and technical specifications for the instrument are given below.


1999 ◽  
Vol 5 (S2) ◽  
pp. 106-107
Author(s):  
S. Stemmer ◽  
S. K. Streiffer ◽  
A. Sane ◽  
T. J. Mazanec ◽  
N. D. Browning

The ability to obtain chemical information with (near) atomic resolution has recently become possible by a combined approach of Z-contrast imaging with electron energy-loss spectroscopy (EELS) in scanning transmission electron microscopes. This method is particularly interesting for the characterization of structure-property relationships in novel multicomponent oxides, which possess added functionality due to their high nonstoichiometry.In this paper we demonstrate the capabilities of this method in analyzing the microstructural mechanisms of accommodation of non-stoichiometry, using two example systems: (Ba,Sr)TiO3thin films for DRAM applications, grown by MOCVD with different amounts of excess titanium, and an oxygen-deficient perovskite ceramic, SrCoOx. The experiments were performed in a JEOL JEM 201 OF field emission transmission electron microscope, operating at 200 kV, equipped with an annular dark-field detector, scanning unit and a post-column imaging filter (Gatan GIF 200). This microscope has been demonstrated to achieve probe sizes of under 1.5 Å .


Author(s):  
H. Todokoro ◽  
S. Nomura ◽  
T. Komoda

It is interesting to observe polymers at atomic size resolution. Some works have been reported for thorium pyromellitate by using a STEM (1), or a CTEM (2,3). The results showed that this polymer forms a chain in which thorium atoms are arranged. However, the distance between adjacent thorium atoms varies over a wide range (0.4-1.3nm) according to the different authors.The present authors have also observed thorium pyromellitate specimens by means of a field emission STEM, described in reference 4. The specimen was prepared by placing a drop of thorium pyromellitate in 10-3 CH3OH solution onto an amorphous carbon film about 2nm thick. The dark field image is shown in Fig. 1A. Thorium atoms are clearly observed as regular atom rows having a spacing of 0.85nm. This lattice gradually deteriorated by successive observations. The image changed to granular structures, as shown in Fig. 1B, which was taken after four scanning frames.


Author(s):  
Andreas Thust ◽  
Juri Barthel ◽  
Karsten Tillmann

The FEI Titan 80-300 TEM is a high-resolution transmission electron microscope equipped with a field emission gun and a corrector for the spherical aberration (<em>C</em><sub>S</sub>) of the imaging lens system. The instrument is designed for the investigation of a wide range of solid state phenomena taking place on the atomic scale, which requires true atomic resolution capabilities. Under optimum optical settings of the image <em>C</em><sub>S</sub>-corrector (CEOS CETCOR) the point-resolution is extended up to the information limit of well below 100 pm with 200 keV and 300 keV electrons. A special piezo-stage design allows ultra-precise positioning of the specimen in all 3 dimensions. Digital images are acquired with a Gatan 2k x 2k slow-scan charged coupled device camera.


1998 ◽  
Vol 4 (S2) ◽  
pp. 470-471
Author(s):  
N. D. Evans ◽  
E. A. Kenik ◽  
M. K. Miller

The Shared Research Equipment (SHaRE) User Facility and Program at Oak Ridge National Laboratory (ORNL) provides microanalytical facilities for studies within the materials sciences. Available instrumentation includes advanced analytical electron microscopes, atom probe field ion microscopes, and nanoindentation facilities. Through SHaRE, researchers from U.S. universities, industries, and government laboratories may collaborate with Facility scientists to perform research not possible at their home institutions. International collaborations are also possible. Most SHaRE projects seek correlations at the microscopic or atomic scale between structure and properties in a wide range of metallic, ceramic, and other structural materials. Typical research projects include studies of magnetic materials, advanced alloys, catalysts, semiconductor device materials, high Tc superconductors, and surface-modified polymers. Projects usually involve one or more external researchers visiting the SHaRE Facility for up to three weeks during the fiscal year (October 1 - September 30). Project approval is based upon the scientific excellence and relevance of proposed collaborative research.


2007 ◽  
Vol 1026 ◽  
Author(s):  
Magnus Garbrecht ◽  
Erdmann Spiecker ◽  
Wolfgang Jäger ◽  
Karsten Tillmann

AbstractThe development of tunable spherical aberration (Cs) imaging correctors for medium-voltage transmission electron microscopes (TEM) offers new opportunities for atomic-scale in-vestigations of materials. A very interesting class of microstructures regarding a variety of dif-ferent physical properties are the transition metal dichalcogenide misfit layer compounds exhibit-ing a high density of incommensurate interfaces due to their stacked nature. In the present study, the benefits coming along with the set-up of negative CS imaging (NCSI) conditions (in TEM) are demonstrated by means of different examples regarding local inhomogeneities in (PbS)1.14NbS2 crystals that can not be dissected in such detail by averaging x-ray techniques.


2006 ◽  
Vol 14 (4) ◽  
pp. 34-41 ◽  
Author(s):  
Thomas F. Kelly ◽  
Keith Thompson ◽  
Emmanuelle A. Marquis ◽  
David J. Larson

When making a sculpture, it is the eyes that guide the hands and tools and perceive the outcome. In simple words, “in order to make, you must be able to see.” So too, when making a nanoelectronic device, it is the microscope (eyes) that guides the process equipment (hands and tools) and perceives the outcome. As we emerge into the century of nanotechnology, it is imperative that the eyes on the nanoworld provide an adequate ability to “see.” We have microscopies that resolve 0.02 nm on a surface (scanning tunneling microscope (STM)) or single atoms in a specimen (atom probe tomographs (APT) and transmission electron microscopes (TEM)).


2021 ◽  
Author(s):  
Albert Xu ◽  
Chen Xu

AbstractFastTomo is a SerialEM script for collecting tilted specimen images in transmission electron microscopes to be further used in tomographic reconstruction. It achieves a speedup over conventional tracking methods by minimizing the usage of off-target tracking shots, and instead applies proportional control to the specimen images. Movement in the Z coordinate is estimated prior to each tilt series in a separate calibration routine. Overall, this method is fast and reliable when the field of view is at least 1 um, and can tolerate minor errors in setting eucentric height. The implemented tilt series schemes include the unidirectional, bidirectional, and dose-symmetric schemes.


2001 ◽  
Vol 7 (S2) ◽  
pp. 522-523
Author(s):  
W. Probst ◽  
G. Benner ◽  
B. Kabius ◽  
G. Lang ◽  
S. Hiller ◽  
...  

Transmission electron microscopes have been built along with and guided by technological opportunities since the last five decades. Even though there are some “workhorse” type of microscopes, these instruments are still more or less built from the technological viewpoint and less from the viewpoint of ease of use in a wide range of applications. On the other hand, leading edge applications are the drivers for the development and the use of leading edge technology. The result then is a “race horse” which is of very limited benefit in “Real world”.During the last decade computers have been integrated to build microscope systems. in most cases, however, computers still have to deal with obsolete electron optical ray path designs and thus, have to be used more to overcome the problems of imperfect optics and bad design of ray paths than to provide optimized “Real world” capabilities.


Sign in / Sign up

Export Citation Format

Share Document