scholarly journals Ecomorphological Variation in Trithemis (Odonata, Libellulidae) Dragonfly Wings Reconsidered

Author(s):  
Norman MacLeod ◽  
Benjamin Price ◽  
Zachary Stevens

Abstract The phylogenetic ecology and wing ecomorphology of the Afro-Asian dragonfly genus Trithemis have been investigated previously. Curiously, results reported for the forewing and hindwing shape variation in the latter were, in some ways, at odds with expectations given the mapping of landscape and water-body preferences over the Trithemis cladogram. To confirm these results we conducted a wing-shape investigation of 27 Trithemis species that employed a robust statistical test for phylogenetic covariation, more comprehensive representation of Trithemis wing morphology and a wider range of morphometric data-analysis procedures. Contrary to results published previously, statistical comparisons of forewing and hindwing mean shapes with the Trithemis cladogram revealed no statistically significant pattern of phylogenetic covariation. Moreover, landmark-based and image-based geometric morphometric analysis results, as well as embedded image-contrast deep learning analysis results, all demonstrated that both wings exhibit substantial convergent wing-shape similarities among, and differences between, species that inhabit open and forested landscapes and species that hunt over temporary/standing or running water bodies. Geometric morphometric data and data-analysis methods yielded the worst performance in identifying wing shape distinctions between Trithemis habitat guilds and the direct analysis of wing images using an embedded, image-contrast, convolution (deep learning) neural network delivered the best performance. Bootstrap and jackknife tests confirmed that our results are not artifacts of overtrained discriminant systems or the “curse of dimensionality”. In addition to our conclusions pertaining to Trithemis ecomorphology, the discrepancy between the previous investigation’s results and ours appears to reflect decisions made with regard to the manner in which complex morphological structures are sampled and analyzed. Naturally, results and interpretations of patterns in morphometric data pertain only to the data collected, not necessarily to other aspects of the structures from which those data were collected. For samples of morphologically similar taxa, landmark-based sampling strategies may be effective provided a sufficient number of landmark points distributed across all structures of potential interest exist. However, in a large number of instances analysis of full digital images of the structures under consideration may prove to be a more robust and effective sampling strategy, especially when coupled with analysis via machine learning procedures.

Zootaxa ◽  
2008 ◽  
Vol 1825 (1) ◽  
pp. 40 ◽  
Author(s):  
JASMINA LUDOŠKI ◽  
LJUBINKA FRANCUSKI ◽  
ANTE VUJIĆ ◽  
VESNA MILANKOV

A landmark-based geometric morphometric approach was used to assess differences in the size and shape of wing among/within three species of the Cheilosia canicularis group (Diptera: Syrphidae): C. canicularis, C. himantopus and C. orthotricha. Wing size and shape variation was observed from 25, 176 and 41 specimens of C. canicularis, C. himantopus and C. orthotricha, respectively, collected from six localities on the Balkan Peninsula. Significant differences in wing size were obtained among the analysed species and canonical variate analysis showed that wing shape was sufficiently different to allow the correct classification of 73% individuals of C. canicularis, 80% of C. orthotricha and 94% of C. himantopus, and clear delimitation of the species pairs C. canicularis/C. orthotricha and C. himantopus/C. orthotricha. In all analysed species, the consistent sex dimorphism in wing shape was observed indicating that female specimens had shorter and broader wings than males. The UPGMA cluster analysis based on squared Mahalanobis distances revealed close accordance with previously published phylogenetic relationships of these species indicated by allozyme and DNA sequence data analysis. Our results suggested that wing parameters contain useful information in quantification phenotypic variation and identification of species in this challenging group for taxonomy and systematics.


2018 ◽  
Vol 19 (6) ◽  
pp. 2147-2156 ◽  
Author(s):  
MARIYA ALEXANDROVNA CHURSINA ◽  
ALEXANDER BORISOVICH RUCHIN

Chursina MA, Ruchin AB. 2018. A checklist of Bombyliidae (Diptera) from Mordovia, Russia and variation of wing shape in Bombylius species. Biodiversitas 19: 2147-2156. A checklist of Bombyliidae (Diptera) of Republic of Mordovia (Russia) is provided, based on material collected from 2008 to 2017. One hundred ninety specimens from 75 localities were collected. Fourteen of the twenty species are listed as belonging to the fauna for the first time. Intraspecific variation and sexual dimorphism in the wing shape of three species of the genus Bombylius Linnaeus, 1758 were investigated using geometric morphometric techniques. The analysis revealed that wing shape is a good discriminator of the species. In addition, significant sexual dimorphism were found: females of two of the three species had larger wings than males. The sex shape differences consisted mainly of сhanges in the placement of the CuA and A1, while interspecific wing shape variation distributed in more dimensions. There was no evidence for allometric relationships relating to sexual dimorphism and interspecific variation. Potential adaptive significance of interspecific and intersex variation in wing size and shape is discussed.


2020 ◽  
Vol 69 (5) ◽  
pp. 813-819 ◽  
Author(s):  
H L Owens ◽  
D S Lewis ◽  
F L Condamine ◽  
A Y Kawahara ◽  
R P Guralnick

Abstract The complex forces that shape butterfly wings have long been a subject of experimental and comparative research. Butterflies use their wings for flight, camouflage, mate recognition, warning, and mimicry. However, general patterns and correlations among wing shape and size evolution are still poorly understood. We collected geometric morphometric measurements from over 1400 digitized museum specimens of Papilio swallowtails and combined them with phylogenetic data to test two hypotheses: 1) forewing shape and size evolve independently of hindwing shape and size and 2) wing size evolves more quickly than wing shape. We also determined the major axes of wing shape variation and discovered that most shape variability occurs in hindwing tails and adjacent areas. We conclude that forewing shape and size are functionally and biomechanically constrained, whereas hindwings are more labile, perhaps in response to disruptive selective pressure for Batesian mimicry or against predation. The development of a significant, re-usable, digitized data resource will enable further investigation on tradeoffs between flight performance and ecological selective pressures, along with the degree to which intraspecific, local-scale selection may explain macroevolutionary patterns. [Batesian mimicry; Lepidoptera; geometric morphometrics; museum specimens.]


2019 ◽  
Vol 17 (1) ◽  
pp. 21-29
Author(s):  
Mariya A. Chursina ◽  

Characters of the wing morphology have signifi cant importance in the systematics and taxonomy of the family Dolichopodidae, but there are only a few studies concerning the variation in wing shape of dolichopodid fl ies. The detailed analysis of interspecifi c and generic wing shape variation can provide data for the taxonomic studies, and understanding of the selective forces shaping wing morphometric characters is important for studying of their pattern of evolutionary change. A geometric morphometric analysis was carried out on 72 species belonging to 5 genera of the subfamily Dolichopodinae in order to determine whether wing shape can be successfully used as a character for taxonomic discrimination of morphologically similar genera and species. Canonical variate analysis based on wing shape data showed signifi cant diff erences among the studied genera and species. Discriminant analysis allowed for the correct genera identifi cation from 74.50% to 91.58% specimens. The overall success for the reassignment of specimens to their a priori species group was on average 84.04%. The detailed analysis of the variation in wing shape in the subfamily and outgroup taxa revealed evolutionary trends, the functional signifi cance of which is discussed.


2019 ◽  
Vol 28 (2) ◽  
pp. 305-316
Author(s):  
M.A. Chursina ◽  
I.Ya. Grichanov

The recent catalogues of the family Dolichopodidae considered Syntormon pallipes (Fabricius, 1794) and S. pseudospicatus Strobl, 1899 as separate species. In this study, we used three approaches to estimate the significance of differences between the two species: molecular analysis (COI and 12S rRNA sequences), analysis of leg colour characters and geometric morphometric analysis of wing shape. The morphological data confirmed the absence of significant differences between S. pallipes and S. pseudospicatus found in the DNA analysis. Significant differences in the wing shape of two species have not been revealed. Hence, according to our data, there is no reason to consider S. pseudospicatus as a distinct species.


Author(s):  
Nele Nauwelaers ◽  
Harold Matthews ◽  
Yi Fan ◽  
Balder Croquet ◽  
Hanne Hoskens ◽  
...  

2020 ◽  
Vol 17 (163) ◽  
pp. 20190721
Author(s):  
J. Larsson ◽  
A. M. Westram ◽  
S. Bengmark ◽  
T. Lundh ◽  
R. K. Butlin

The growth of snail shells can be described by simple mathematical rules. Variation in a few parameters can explain much of the diversity of shell shapes seen in nature. However, empirical studies of gastropod shell shape variation typically use geometric morphometric approaches, which do not capture this growth pattern. We have developed a way to infer a set of developmentally descriptive shape parameters based on three-dimensional logarithmic helicospiral growth and using landmarks from two-dimensional shell images as input. We demonstrate the utility of this approach, and compare it to the geometric morphometric approach, using a large set of Littorina saxatilis shells in which locally adapted populations differ in shape. Our method can be modified easily to make it applicable to a wide range of shell forms, which would allow for investigations of the similarities and differences between and within many different species of gastropods.


2017 ◽  
Vol 75 (2) ◽  
pp. 711-718
Author(s):  
George Geladakis ◽  
Nikolaos Nikolioudakis ◽  
George Koumoundouros ◽  
Stylianos Somarakis

Abstract Morphometric characters have traditionally been used to describe the population structure of fishes. Body shape variation, which is often environmentally induced, may provide a good record of short-term population structuring. However, factors unrelated to environmental or genetic influences on body morphology may complicate sampling and the use of morphometric features for stock discrimination. In the present study, we used geometric morphometric variables to compare the European sardine Sardina pilchardus putative stocks of the Aegean and Ionian Seas (eastern Mediterranean). Landmark data of fish collected at seven different sites were subjected to canonical analysis of principal coordinates (CAP). The average body condition of sardines from these sites was strongly and linearly related to corresponding scores along CAP1, the axis exhibiting the highest correlation with the morphometric data cloud. The average scores along CAP2 and CAP3 appeared to be linked to morphological differentiation related to temperature effects and prey availability (mesozooplankton biomass). Despite the primary and confounding effect of body condition, discrimination of different morphotypes corresponding to the Aegean and the Ionian Sea stocks was highly significant with 81% correct reallocations for the respective CAP model.


Sign in / Sign up

Export Citation Format

Share Document