scholarly journals Soot Distribution and Thermal Regeneration of Marine Diesel Particulate Filter

Author(s):  
Xiangli Wang ◽  
Peiyong Ni

Abstract Particles from marine diesel engine exhaust gas have caused serious air pollution and human health. Diesel particulate filter (DPF) can effectively reduce particle emissions from marine diesel engines. The distribution and regeneration of soot in DPF are two important issues. In this paper, a mathematical model of a marine DPF was built up and the particle trap process and the regeneration dynamics were simulated. The results show that the cake soot mass concentrations during trap process increase linearly with the increase of the exhaust gas flows while the depth soot mass concentrations firstly increase linearly and then keep constant. Soot is mainly concentrated in the front and rear portion of the filter and less soot is in the middle. The soot distribution in the cake and depth layer shows the unevenness during the trap and regeneration process. The initial soot loadings have great effects on pressure drops and soot mass concentrations before regeneration, but little effect after regeneration. The exhaust gas temperature heated to 850 K can achieve 94% efficiency for the DPF regeneration. There is no obvious difference in pressure drops and soot mass concentrations between fast heating and slow heating. The heating duration of exhaust gas has an important impact on DPF regeneration.

Author(s):  
Hyunjun Lee ◽  
Jaesik Shin ◽  
Manbae Han ◽  
Myoungho Sunwoo

The successful utilization of a diesel particulate filter (DPF) to reduce particulate matter (PM) in a passenger car diesel engine necessitates a periodic regeneration of the DPF catalyst without deterioration of the drivability and emission control performance. For successful active DPF regeneration, the exhaust gas temperature should be over 500 °C to oxidize the soot loaded in the DPF. Previous research increased the exhaust gas temperature by applying early and late post fuel injection with a look-up table (LUT) based feedforward control implemented into the engine management system (EMS). However, this method requires enormous calibration work to find the optimal timing and quantity of the main, early, and late post fuel injection with less certainty of accurate torque control. To address this issue, we propose a cylinder pressure based multiple fuel injection (MFI) control method for active DPF regeneration. The feedback control of the indicated mean effective pressure (IMEP), lambda, and DPF upstream temperature was applied to precisely control the injection quantity of the main, early, and late post fuel injection. To determine their fuel injection timings, a mass fraction burned 60% after location of the rate of heat release maximum (MFB60aLoROHRmax) was proposed based on the cylinder pressure information. The proposed control method was implemented in an in-house EMS and validated at several engine operating conditions. During the regeneration period, the exhaust gas temperature tracked the desired temperature, and the engine torque fluctuation was minimized with minimal PM and NOx emissions.


2021 ◽  
Author(s):  
Rafał Sala ◽  
Kamil Kołek ◽  
Witold Konior

This paper describes the methodology and test results of diesel particulate filter (DPF) functional testing performed on non-road compression ignition engine installed on test bed. The scope of work included testing of various DPF regeneration strategies, backpressure and balance point tests and emission performance evaluation during a legislative test cycles. The aim of this study was to observe and investigate the influence of exhaust gas parameters on DPF functionality in terms of soot loading, type and duration of the regeneration and emission performance. Under investigation was also the capability of soot burning rate. The DPF sample under test was part of the complete exhaust aftertreatment system (ATS) which consisted of: a diesel oxidation catalyst (DOC), a DPF and a selective catalytic reduction system (SCR). Testing was carried out on a heavy-duty diesel engine installed on a test stand with a dynamic dynamometer and equipped with an emission bench. The test program allowed to assess the engine matching to exhaust aftertreatment system with regard to emissions compliance, in-service operation and necessary engine control unit (ECU) calibration works. The results show the influence of the DPF regeneration strategy on its duration and on the soot mass burn rate. Passive DPF regeneration was a favorable mode of DPF cleaning, due to lack of fuel penalty and lower aging impact on the entire ATS. Optimization of soot flow rate, exhaust gas temperature and the chemistry of the DOC/DPF was further recommended to ensure the long-term durability of the entire system.


2012 ◽  
Vol 614-615 ◽  
pp. 366-370
Author(s):  
Dan Wang ◽  
Zhong Chang Liu ◽  
Jing Tian

For diesel particulate filter (DPF) drop-to-idle uncontrolled regeneration, a regular regeneration is initiated following a vehicle stop while the engine switches to idle. The increase in oxygen concentration and the decrease in exhaust flow rate can result in a sharp exotherm in the filter and high temperature to damage the substrate. In this paper, control solutions for the idle thermal protection of the filter was proposed and validated experimentally. At high idle speed of 2200rpm, increasing exhaust gas recirculation (EGR) combined with intake throttling was a practical way to reduce available oxygen content to control the exothermal reaction rate. A much lower peak temperature was obtained for safe DPF regeneration during idle. The research would provide based information for optimizing the regeneration management strategy in order to avoid DPF failure in real world operation.


2018 ◽  
Vol 20 (8-9) ◽  
pp. 953-966 ◽  
Author(s):  
Madhu Singh ◽  
Mek Srilomsak ◽  
Yujun Wang ◽  
Katsunori Hanamura ◽  
Randy Vander Wal

Development of the regeneration process on diesel particulate filters requires a better understanding of soot oxidation phenomena, especially its relation to soot nanostructure. Nitrogen dioxide (NO2) is known to play an essential role in passive regeneration by oxidizing soot at low temperatures, especially in the presence of oxygen (O2) in the exhaust. However, change in soot nanostructure due to oxidation by NO2–O2 mixtures has not received much attention. This work focuses on nanostructure evolution during passive regeneration of the diesel particulate filter by oxidation of soot at normal exhaust gas temperatures (300°C–400°C). High-resolution transmission electron microscopy of partially oxidized model carbons (R250, M1300, arc-generated soot) and diesel soot under NO2–O2 mixtures is used to investigate physical changes in nanostructure correlating with the material’s behavior during oxidation. Microscopy reveals the changing nanostructure of model carbons during oxidation while fringe analysis of the images points to the differences in the structural metrics of fringe length and tortuosity of the resultant structures. The variation in oxidation rates highlights the inter-dependence of the material’s reactivity with its structure. NO2 preferentially oxidizes edge-site carbon, promotes surface oxidation by altering the particle’s burning mode with increased overall reactivity of NO2+O2 resulting in inhibition of internal burning, typically observed by O2 at exhaust gas temperatures.


Author(s):  
Sungjun Yoon ◽  
Hongsuk Kim ◽  
Daesik Kim ◽  
Sungwook Park

Stringent emission regulations (e.g., Euro-6) have forced automotive manufacturers to equip a diesel particulate filter (DPF) on diesel cars. Generally, postinjection is used as a method to regenerate the DPF. However, it is known that postinjection deteriorates the specific fuel consumption and causes oil dilution for some operating conditions. Thus, an injection strategy for regeneration is one of the key technologies for diesel powertrains equipped with a DPF. This paper presents correlations between the fuel injection strategy and exhaust gas temperature for DPF regeneration. The experimental apparatus consists of a single-cylinder diesel engine, a DC dynamometer, an emission test bench, and an engine control system. In the present study, the postinjection timing was in the range of 40 deg aTDC to 110 deg aTDC and double postinjection was considered. In addition, the effects of the injection pressure were investigated. The engine load was varied among low load to midload conditions, and the amount of fuel of postinjection was increased up to 10 mg/stk. The oil dilution during the fuel injection and combustion processes was estimated by the diesel loss measured by comparing two global equivalences ratios: one measured from a lambda sensor installed at the exhaust port and one estimated from the intake air mass and injected fuel mass. In the present study, the differences of the global equivalence ratios were mainly caused by the oil dilution during postinjection. The experimental results of the present study suggest optimal engine operating conditions including the fuel injection strategy to obtain an appropriate exhaust gas temperature for DPF regeneration. The experimental results of the exhaust gas temperature distributions for various engine operating conditions are discussed. In addition, it was revealed that the amount of oil dilution was reduced by splitting the postinjection (i.e., double postinjection). The effects of the injection pressure on the exhaust gas temperature were dependent on the combustion phasing and injection strategies.


2013 ◽  
Vol 48 (4) ◽  
pp. 510-515
Author(s):  
Munekatsu Furugen ◽  
Hidetsugu Sasaki ◽  
Teruhisa Takahashi ◽  
Tatsuro Tsukamoto

2013 ◽  
Vol 448-453 ◽  
pp. 459-463
Author(s):  
Jun Fu ◽  
Wei Chen ◽  
Yuan Tang

The decision-making and control system of a burner-type diesel particulate filter (DPF) regeneration was designed. Through the online simulation and the application research, it showed that the regeneration system had good response performances on prediction, decision-making, support and control. The DPF regeneration could be rapidly completed in 5-10 minutes and the regeneration efficiency be more than 87%, and the peak temperature and its maximum average grads were in the safe range. The system can realize the efficient, reliable and safe regeneration.


Sign in / Sign up

Export Citation Format

Share Document