scholarly journals Tropical Origins of the Record-breaking 2020 Summer Rainfall Extremes in East Asia

Author(s):  
Sunyong Kim ◽  
Jae-Heung Park ◽  
Jong-Seong Kug

Abstract The East Asian countries have experienced heavy rainfalls in boreal summer 2020. Here, we investigate the dynamical processes driving the East Asian rainfall extremes during July and August. The Indian Ocean basin warming in June can be responsible for the anticyclonic anomalies in the western North Pacific (WNP), which contribute to the zonally-elongated rainfalls in East Asia during July through an atmospheric Rossby wave train. In August, the East Asian rainfall increase is also related to the anticyclonic anomalies in the subtropical WNP, although it is located further north. It is suggested that the north tropical Atlantic warming in June partly contributes to the subtropical WNP rainfall decrease in August through a subtropical teleconnection. The rainfall decrease in the subtropical WNP region during August drives the local anticyclonic anomalies that cause the rainfall increase in East Asia. The tropical Indian Ocean anomalously warmed in June and the subtropical WNP rainfall decreased in August 2020, which played a role in modulating the WNP anticyclonic anomalies. Therefore, the record-breaking rainfalls in East Asia occurred during July and August 2020 can potentially be explained by the teleconnections induced by the tropical origins, such as tropical Indian Ocean warming and subtropical WNP rainfall decrease.

2017 ◽  
Vol 30 (17) ◽  
pp. 7087-7103 ◽  
Author(s):  
Lidou Huyan ◽  
Jianping Li ◽  
Sen Zhao ◽  
Cheng Sun ◽  
Di Dong ◽  
...  

This paper analyzes the relationship between the 1000–850-hPa layer perturbation potential energy (LPPE) as the difference in local potential energy between the actual state and the reference state and the East Asian summer monsoon (EASM) using reanalysis and observational datasets. The EASM is closely related to the first-order moment term of LPPE (LPPE1) from the preceding March to the boreal summer over three key regions: the eastern Indian Ocean, the subtropical central Pacific, and midlatitude East Asia. The LPPE1 pattern (−, +, +), with negative values over the eastern Indian Ocean, positive values over the subtropical central Pacific, and positive values over East Asia, corresponds to negative LPPE1 anomalies over the south of the EASM region but positive LPPE1 anomalies over the north of the EASM region, which lead to an anomalous downward branch over the southern region but an upward branch over the northern region. The anomalous vertical motion affects the local meridional circulation over East Asia that leads to a southwesterly wind anomaly over East Asia (south of 30°N) at 850 hPa and anomalous downward motion over 100°–120°E (along 25°–35°N), resulting in a stronger EASM, more kinetic energy over the EASM region, and less boreal summer rainfall in the middle and lower reaches of the Yangtze River valley (24°–36°N, 90°–125°E). These LPPE1 anomalies in the eastern Indian Ocean and subtropical central Pacific appear to be connected to changes in local sea surface temperature through the release of latent heat.


2016 ◽  
Vol 29 (20) ◽  
pp. 7313-7327 ◽  
Author(s):  
Zhiwei Zhu ◽  
Tim Li

Abstract The present study reveals a close relationship between the leading mode of continental U.S. (CONUS) summer rainfall and the East Asian subtropical monsoon rainfall (viz., mei-yu in China, baiu in Japan, and changma in the Korean peninsula). The East Asian subtropical monsoon rainfall and the CONUS dipole rainfall patterns are connected by an upper-level Asia–North America (ANA) teleconnection. The Rossby wave energy propagates along the path of the westerly jet stream (WJS) from East Asia to North America, affecting the CONUS summer rainfall. Mechanisms through which East Asian summer monsoon heating influence North American rainfall are illustrated by idealized anomaly atmospheric general circulation model experiments. In boreal winter, because of the southward shift of the WJS, the Pacific–North American (PNA) pattern can be excited by the tropical central/eastern Pacific heating associated with El Niño, affecting the rainfall over CONUS. In boreal summer, because the WJS is weaker and locates farther to the north, an equatorial heating anomaly cannot directly perturb the WJS. A perturbation heating over subtropical East Asia, however, can trigger an ANA pattern along the path of the WJS, affecting the rainfall over North America. The season-dependent teleconnection scenario illustrates that the predictability source of CONUS rainfall variability is different between winter and summer. While the PNA pattern generated by El Niño is critical for CONUS rainfall in northern winter, the CONUS dipole rainfall variation in boreal summer is mainly governed by the remote forcing over subtropical East Asia via the ANA teleconnection.


2013 ◽  
Vol 9 (4) ◽  
pp. 4263-4291
Author(s):  
S. Nan ◽  
M. Tan ◽  
P. Zhao

Abstract. Further verification about the circulation effect of stalagmite δ18O in East Asian monsoon region needs the quantitative description for the proportion of water vapor transport (WVT) from different source regions. WVT passageway intensities are defined as regionally averaged WVT flux modes in this paper. The ratio between two WVT passageways' intensities represents relative intensity of the two WVT passageways. Using the NCEP-NCAR reanalysis data for 1948–2011, the ratios of the intensities of three WVT passageways from low latitudes (the intensity of WVT from Bay of Bengal (IBOB), the intensity of WVT from South China Sea (ISCS) and the intensity of WVT from western North Pacific (IWNP) in summer are calculated. SB is for the ISCS-IBOB ratio, WB for the IWNP-IBOB ratio, and WS for the IWNP-ISCS ratio. The decadal increase occurs in the time series of WB and WS, with higher values in 1976–1995 and lower values in 1950–1975, probably resulting from the strengthening of WVT from WNP in the midterm of 1970s. East Asian atmospheric circulations, WVTs and previous SST characters corresponding to the ratios are analyzed. The result indicates that SB, WB and WS may properly reflect the relative intensities between ISCS and IBOB, between IWNP and IBOB, and between IWNP and ISCS, respectively. For high SB years, the Asian Low and the western Pacific subtropical high (WPSH) weaken. The southwesterly winds from BOB to the Yangtze River valley by the southeast of the Tibetan Plateau weaken and the WVT from BOB to East Asia weakens. The southwesterly winds from SCS to East Asia strengthen and the WVT from SCS to East Asia strengthens. In high WB years, the Asian Low weakens and the WPSH shifts westwards, enhances and enlarges. The WVT from WNP to East Asia increases because of the strengthening of the easterly winds on the south of the WPSH. The westerly winds from BOB to East Asia by Indo-China Peninsula decrease and the WVT from BOB to East Asia weakens. The atmospheric circulation and WVT associated with WS are similar with those associated with WB. There are close relationships between WB (and WS) and the WPSH area, position and intensity. In high WB (and WS) years, the WPSH shifts westwards, enlarges and enhances. There is no obvious anomalous previous SST signal in tropical Indian Ocean and equatorial central and eastern Pacific for anomalous SB years. WB and WS are closely related to previous SST signal. When the equatorial central and eastern Pacific is in El Niño phase, SST in the tropical Indian Ocean, BOB and SCS is high and SST at middle latitudes in North Pacific is low, WB and WS tend to be high. After the midterm of 1970s, the equatorial central and eastern Pacific is often in El Niño phase. It is in agreement with higher WB in 1976–1995 than that in 1950–1975. In light of circulation effect of stalagmite δ18O in East Asia, high WB implies high stalagmite δ18O. Therefore, the interdecadal increase of WB in 1976–1995 than in 1950–1975 provides the proof using the conception of circulation effect to explain the interdecadal change of stalagmite δ18O at most regions in East Asia.


2014 ◽  
Vol 27 (6) ◽  
pp. 2361-2374 ◽  
Author(s):  
Lin Wang ◽  
Wen Chen

Abstract The thermal contrast between the Asian continent and the adjacent oceans is the primary aspect of the East Asian winter monsoon (EAWM) that can be well represented in the sea level pressure (SLP) field. Based on this consideration, a new SLP-based index measuring the intensity of the EAWM is proposed by explicitly taking into account both the east–west and the north–south pressure gradients around East Asia. The new index can delineate the EAWM-related circulation anomalies well, including the deepened (shallow) midtropospheric East Asian trough, sharpened and accelerated (widened and decelerated) upper-tropospheric East Asian jet stream, and enhanced (weakened) lower-tropospheric northerly winds in strong (weak) EAWM winters. Compared with previous indices, the new index has a very good performance describing the winter-mean surface air temperature variations over East Asia, especially for the extreme warm or cold winters. The index is strongly correlated with several atmospheric teleconnections including the Arctic Oscillation, the Eurasian pattern, and the North Pacific Oscillation/western Pacific pattern, implying the possible internal dynamics of the EAWM variability. Meanwhile, the index is significantly linked to El Niño–Southern Oscillation (ENSO) and the sea surface temperature (SST) over the tropical Indian Ocean. Moreover, the SST anomalies over the tropical Indian Ocean are more closely related to the index than ENSO as an independent predictor. This adds further knowledge to the prediction potentials of the EAWM apart from ENSO. The predictability of the index is high in the hindcasts of the Centre National de Recherches Météorologiques (CNRM) model from Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER). Hence, it would be a good choice to use this index for the monitoring, prediction, and research of the EAWM.


2021 ◽  
pp. 1-39
Author(s):  
Lei Zhang ◽  
Weiqing Han ◽  
Zeng-Zhen Hu

AbstractAn unprecedented extreme positive Indian Ocean Dipole event (pIOD) occurred in 2019, which has caused widespread disastrous impacts on countries bordering the Indian Ocean, including the East African floods and vast bushfires in Australia. Here we investigate the causes for the 2019 pIOD by analyzing multiple observational datasets and performing numerical model experiments. We find that the 2019 pIOD is triggered in May by easterly wind bursts over the tropical Indian Ocean associated with the dry phase of the boreal summer intraseasonal oscillation, and sustained by the local atmosphere-ocean interaction thereafter. During September-November, warm sea surface temperature anomalies (SSTA) in the central-western tropical Pacific further enhance the Indian Ocean’s easterly winds, bringing the pIOD to an extreme magnitude. The central-western tropical Pacific warm SSTA is strengthened by two consecutive Madden Julian Oscillation (MJO) events that originate from the tropical Indian Ocean. Our results highlight the important roles of cross-basin and cross-timescale interactions in generating extreme IOD events. The lack of accurate representation of these interactions may be the root for a short lead time in predicting this extreme pIOD with a state-of-the-art climate forecast model.


2018 ◽  
Vol 18 (16) ◽  
pp. 11973-11990 ◽  
Author(s):  
Alina Fiehn ◽  
Birgit Quack ◽  
Irene Stemmler ◽  
Franziska Ziska ◽  
Kirstin Krüger

Abstract. Oceanic very short-lived substances (VSLSs), such as bromoform (CHBr3), contribute to stratospheric halogen loading and, thus, to ozone depletion. However, the amount, timing, and region of bromine delivery to the stratosphere through one of the main entrance gates, the Indian summer monsoon circulation, are still uncertain. In this study, we created two bromoform emission inventories with monthly resolution for the tropical Indian Ocean and west Pacific based on new in situ bromoform measurements and novel ocean biogeochemistry modeling. The mass transport and atmospheric mixing ratios of bromoform were modeled for the year 2014 with the particle dispersion model FLEXPART driven by ERA-Interim reanalysis. We compare results between two emission scenarios: (1) monthly averaged and (2) annually averaged emissions. Both simulations reproduce the atmospheric distribution of bromoform from ship- and aircraft-based observations in the boundary layer and upper troposphere above the Indian Ocean reasonably well. Using monthly resolved emissions, the main oceanic source regions for the stratosphere include the Arabian Sea and Bay of Bengal in boreal summer and the tropical west Pacific Ocean in boreal winter. The main stratospheric injection in boreal summer occurs over the southern tip of India associated with the high local oceanic sources and strong convection of the summer monsoon. In boreal winter more bromoform is entrained over the west Pacific than over the Indian Ocean. The annually averaged stratospheric injection of bromoform is in the same range whether using monthly averaged or annually averaged emissions in our Lagrangian calculations. However, monthly averaged emissions result in the highest mixing ratios within the Asian monsoon anticyclone in boreal summer and above the central Indian Ocean in boreal winter, while annually averaged emissions display a maximum above the west Indian Ocean in boreal spring. In the Asian summer monsoon anticyclone bromoform atmospheric mixing ratios vary by up to 50 % between using monthly averaged and annually averaged oceanic emissions. Our results underline that the seasonal and regional stratospheric bromine injection from the tropical Indian Ocean and west Pacific critically depend on the seasonality and spatial distribution of the VSLS emissions.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1605
Author(s):  
Mary T. Kayano ◽  
Wilmar L. Cerón ◽  
Rita V. Andreoli ◽  
Rodrigo A. F. Souza ◽  
Itamara P. Souza

Contrasting effects of the tropical Indian and Pacific Oceans on the atmospheric circulation and rainfall interannual variations over South America during southern winter are assessed considering the effects of the warm Indian Ocean basin-wide (IOBW) and El Niño (EN) events, and of the cold IOBW and La Niña events, which are represented by sea surface temperature-based indices. Analyses are undertaken using total and partial correlations. When the effects of the two warm events are isolated from each other, the contrasts between the associated rainfall anomalies in most of South America become accentuated. In particular, EN relates to anomalous wet conditions, and the warm IOBW event to opposite conditions in extensive areas of the 5° S–25° S band. These effects in the 5° S–15° S sector are due to the anomalous regional Hadley cells, with rising motions in this band for the EN and sinking motions for the warm IOBW event. Meanwhile, in subtropical South America, the opposite effects of the EN and warm IOBW seem to be due to the presence of anomalous anticyclone and cyclone and associated moisture transport, respectively. These opposite effects of the warm IOBW and EN events on the rainfall in part of central South America might explain the weak rainfall relation in this region to the El Niño–Southern Oscillation (ENSO). Our results emphasize the important role of the tropical Indian Ocean in the South American climate and environment during southern winter.


2021 ◽  
Author(s):  
Yinghan Sang ◽  
Hong-Li Ren ◽  
Yi Deng ◽  
Xiaofeng Xu ◽  
Xueli Shi ◽  
...  

Abstract This paper reports findings from a diagnostic and modeling analysis that investigates the impact of the late-spring soil moisture anomaly over North Eurasia on the boreal summer rainfall over northern East Asia (NEA). Soil moisture in May in the region from the Kara-Laptev Sea coasts to Central Siberian Plateau is found to be negatively correlated with the summer rainfall from Mongolia to Northeast China. The atmospheric circulation anomalies associated with the anomalously dry soil are characterized by a pressure dipole with the high-pressure center located over North Eurasia and the low-pressure center over NEA, where an anomalous lower-level moisture convergence occurs, favoring rainfall formation. Diagnoses and Modeling experiments demonstrate that the effect of the spring low soil moisture over North Eurasia may persist into the following summer through modulating local surface latent and sensible heat fluxes, increasing low-level air temperature at higher latitudes, and effectively reducing the meridional temperature gradient. The weakened temperature gradient could induce the decreased zonal wind and the generation of a low-pressure center over NEA, associated with a favorable condition of local synoptic activity. The above relationships and mechanisms are vice versa for the prior wetter soil and decreased NEA rainfall. These findings suggest that soil moisture anomalies over North Eurasia may act as a new precursor providing an additional predictability source for better predicting the summer rainfall in NEA.


Sign in / Sign up

Export Citation Format

Share Document