scholarly journals Synthesis and Property Characterization of Ternary Laminar Zr2SB Ceramic

Author(s):  
Qiqiang Zhang ◽  
Shuai Fu ◽  
Detian Wan ◽  
Yiwang Bao ◽  
Qingguo Feng ◽  
...  

Abstract In this paper, Zr2SB ceramics with high relative density (99.03%) and high purity of 82.95 wt% (containing 8.96 wt% ZrB2 and 8.09 wt% zirconium) were successfully synthesized from ZrH2, sublimated sulfur and boron powder by spark plasma sintering at 1300 ℃. The reaction mechanism, microstructures, physical properties and mechanical properties of Zr2SB ceramic were systematically studied. The results show that Zr2SB was obtained by the reaction of zirconium sulfide, zirconium and boron, and ZrB2 coexisted in the sample as a symbiotic impurity phase. The average grain size of Zr2SB was 12.46 μm in length and 5.12 μm in width, and the mean grain sizes of ZrB2 and zirconium impurities were about 300 nm. In terms of physical properties, the measured thermal expansion coefficient was 7.64 × 10-6 K-1 from room temperature to 1200 ℃, and the thermal capacity and thermal conductivity at room temperature were 0.39 J·g−1·K−1 and 12.01 W∙m−1∙K−1, respectively. The room temperature electrical conductivity of Zr2SB ceramic was measured to be 1.74 × 106 Ω−1∙m−1. In terms of mechanical properties, Vickers hardness was 9.86 ± 0.63 GPa under 200 N load, and the measured flexural strength, fracture toughness and compressive strength were 269 ± 12.7 MPa, 3.94 ± 0.63 MPa·m1/2, and 2166.74 ± 291.34 MPa, respectively.

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3560
Author(s):  
Tomasz Skrzekut ◽  
Grzegorz Boczkal ◽  
Adam Zwoliński ◽  
Piotr Noga ◽  
Lucyna Jaworska ◽  
...  

Zr-2.5Cu and Zr-10Cu powder mixtures were consolidated in the extrusion process and using the spark plasma sintering technique. In these studies, material tests were carried out in the fields of phase composition, microstructure, hardness and tensile strength for Zr-Cu materials at room temperature (RT) and 400 °C. Fractography analysis of materials at room temperature and 400 °C was carried out. The research took into account the anisotropy of the materials obtained in the extrusion process. For the nonequilibrium SPS process, ZrCu2 and Cu10Zr7 intermetallic compounds formed in the material at sintering temperature. Extruded materials were composed mainly of α-Zr and ZrCu2. The presence of intermetallic compounds affected the reduction in the strength properties of the tested materials. The highest strength value of 205 MPa was obtained for the extruded Zr-2.5Cu, for which the samples were cut in the direction of extrusion. For materials with 10 wt.% copper, more participation of the intermetallic phase was formed, which lowered the mechanical properties of the obtained materials. In addition to brittle intermetallic phases, the materials were characterized by residual porosity, which also reduced the strength properties.


2002 ◽  
Vol 740 ◽  
Author(s):  
Mats Carlsson ◽  
Mats Johnsson ◽  
Annika Pohl

ABSTRACTCeramic composites containing 2 and 5vol. % of nanosized commercially available TiN and SiC particles in alumina were prepared via a water based slurry processing route followed by spark plasma sintering (SPS) at 75 MPa in the temperature range 1200–1600°C. Some of the samples could be fully densified by use of SPS already after five minutes at 1200°C and 75 MPa. The aim was to control the alumina grain growth and thus obtain different nano-structure types. The microstructures have been correlated to some mechanical properties; e.g. hardness and fracture toughness.


2019 ◽  
Vol 34 (01n03) ◽  
pp. 2040036
Author(s):  
Yongjun Su ◽  
Yunfeng Lin ◽  
Na Zhang ◽  
Deliang Zhang

This work deals with the consolidation of a TiAl alloy powder by spark plasma sintering (SPS). Pre-alloyed powder with a composition of Ti–48Al–2Cr–2Nb (at.%) was consolidated in a SPS furnace at temperatures between 1200[Formula: see text]C and 1325[Formula: see text]C and with a pressure of 50 MPa. The microstructures obtained after SPS depend on the sintering temperature. Tensile tests at room temperature were performed. The alloy SPSed at temperatures not less than 1250[Formula: see text]C exhibits good properties at room temperature.


2007 ◽  
Vol 336-338 ◽  
pp. 834-837 ◽  
Author(s):  
Wei Shu Liu ◽  
Bo Ping Zhang ◽  
Jing Feng Li ◽  
Heng Wang

Single-phase polycrystalline CoSb3 skutterudite was prepared through a new combination of mechanical alloying (MA) and spark plasma sintering (SPS). In order to investigate the influence of MA conditions on the microstructure and thermoelectric properties, MA synthesis were carried out under various conditions with different milling times. The powder sample MAed for 6h still consisted of metal Sb, and then transformed to CoSb3 with a little amount of metal Sb and CoSb2 phases after MA for 15h. Further prolonging the MA time resulted in the decomposition of CoSb3 to CoSb2 phase. The average grain size of the SPSed samples decreased from 650nm to 250nm as MA-time was prolonged from 6 to 24h. Lattice parameters estimated form XRD patterns increase with the increasing MA time. All samples SPSed at 600°C for holding 5 min show an n-type conduction. The electrical resistivity was 1030, 895, 410, 260 μm for the samples from the MA-derived powders with MA-time of 6, 15, 24 and 33h at room temperature, respectively, then reduced to 60 μm at 400°C for all samples. An optimum MA time is 24 h in which the sample shows the highest power factor 612μW/m*K2 at 150°C.


2009 ◽  
Vol 24 (9) ◽  
pp. 2909-2916 ◽  
Author(s):  
Sergio Scudino ◽  
Kumar B. Surreddi ◽  
Hoang V. Nguyen ◽  
Gang Liu ◽  
Thomas Gemming ◽  
...  

In situ devitrification and consolidation of gas atomized Al87Ni8La5 glassy powders into highly dense bulk specimens was carried out by spark plasma sintering. Room temperature compression tests of the consolidated bulk material reveal remarkable mechanical properties, namely, high compression strength of 930 MPa combined with plastic strain exceeding 25%. These findings demonstrate that the combined devitrification and consolidation of glassy precursors by spark plasma sintering is a suitable method for the production of Al-based materials characterized by high strength and considerable plastic deformation.


2010 ◽  
Vol 37-38 ◽  
pp. 980-984 ◽  
Author(s):  
Xiao Qiang Li ◽  
Zhang Yi Xiao ◽  
Chao Yang ◽  
Sheng Guan Qu

Commerical pure WC powders of 0.2, 0.4, 0.8, 2.0 and 3.0 m in diameter were sintered by spark plasma sintering process at 1300 °C, respectively. By analyzing the XRD patterns of the initial powders and the microstructure of the sintered samples, it is affirmed that the powders with an average size of 0.8 m exhibits the best activity and sintering property. To optimize sintering temperature, the sintering of 0.8 m powders was carried out at 1200-1700 °C. The specimen sintered at 1300 °C has a density of 15.49 g/cm3 and an average grain size of about 0.7 m, and exhibits the most excellent mechanical properties. The corresponding Vickers hardness and transverse rupture strength are 2469 HV and 1656 MPa, respectively.


2013 ◽  
Vol 747-748 ◽  
pp. 747-753
Author(s):  
Wei Zong ◽  
Wei Liu ◽  
Jiang Bo Sha

Through the spark plasma sintering technology (SPS), the Nb/Nb5Si3/Cr2Nb mixed powders with different volume ratios of 7:1:2 and 7:2:1 were sintered into ingots. The effects of three powder mixing methods on phase constitution, microstructure and room-temperature mechanical properties of the ternary Nb/Nb5Si3/Cr2Nb alloys were investigated. The result shows that the method of dry mixing without ball milling is advantageous for toughness, the increase of SPS temperature decreases the toughness whereas improves the hardness. The stiffening Nb5Si3and Cr2Nb phases tend to form a continuous network, resulting in decrease of toughness. It is interesting that when the fractions of the Nb5Si3phase larger than that of the Cr2Nb phases, these strengthening phases prefer to appear in the form of network, which is detrimental for toughness.


Sign in / Sign up

Export Citation Format

Share Document