scholarly journals Conditional Knockout of PDK1 in Osteoclasts Suppressed Osteoclastogenesis and Ameliorated Prostate Cancer-Induced Osteolysis

Author(s):  
Yanan Zhang ◽  
Haibin Nong ◽  
Yiguang Bai ◽  
Quan Zhou ◽  
Qiong Zhang ◽  
...  

Abstract Background: The development and maintenance of normal bone tissue is supported by balanced communication between osteoblasts and osteoclasts. The invasion of cancer cells disrupts this balance, leading to osteolysis. As the only bone resorption cells in vivo, osteoclasts play important roles in cancer-induced osteolysis. However, the function of 3-phosphoinositide–dependent protein kinase-1 (PDK1) in osteoclast resorption remains unclear. Methods: In our study, we used a receptor activator of nuclear factor-kappa B (RANK) promoter‐driven Cre‐LoxP system to conditionally delete the PDK1 gene in osteoclasts in mice. We investigated the impact of Osteoclast‐specific knockout of PDK1 on prostate cancer-induced osteolysis. Bone marrow-derived macrophage cells (BMMs) were extracted and induced to differentiate osteoclasts in vitro to examine the function of PDK1 in osteoclasts.Results: In this study, we found that PDK1 conditional knockout (cKO) mice exhibited smaller body sizes when contrasted with the wild-type (WT) mice. Moreover, deletion of PDK1 in osteoclasts ameliorated osteolysis and reduced bone resorption markers in the murine model of prostate cancer-stimulated osteolysis. In vivo, we discovered that osteoclast‐specific knockout of PDK1 suppressed RANKL-stimulated bone resorption function, osteoclastogenesis, and osteoclast-specific gene expression (Ctsk, TRAP, MMP-9, NFATc1). Western blot analyses of RANKL-induced signaling pathways showed that conditional knockout of PDK1 in osteoclasts inhibited the early nuclear factor κB (NF-κB) activation, which consequently suppressed the downstream induction of NFATc1. Conclusion: These findings demonstrated that PDK1 performs an instrumental function in osteoclastogenesis and prostate cancer-induced osteolysis by modulating the PDK1/AKT/NF-κB signaling pathway.

PLoS ONE ◽  
2012 ◽  
Vol 7 (5) ◽  
pp. e38000 ◽  
Author(s):  
Yong-Qing Liu ◽  
Xiao-Yan Hu ◽  
Tao Lu ◽  
Yan-Na Cheng ◽  
Charles Y. F. Young ◽  
...  

2008 ◽  
Vol 68 (20) ◽  
pp. 8564-8572 ◽  
Author(s):  
Bilal Bin Hafeez ◽  
Imtiaz Ahmad Siddiqui ◽  
Mohammad Asim ◽  
Arshi Malik ◽  
Farrukh Afaq ◽  
...  

2019 ◽  
Vol 8 (12) ◽  
pp. 2091 ◽  
Author(s):  
Stuart B. Goodman ◽  
Jiri Gallo

Clinical studies, as well as in vitro and in vivo experiments have demonstrated that byproducts from joint replacements induce an inflammatory reaction that can result in periprosthetic osteolysis (PPOL) and aseptic loosening (AL). Particle-stimulated macrophages and other cells release cytokines, chemokines, and other pro-inflammatory substances that perpetuate chronic inflammation, induce osteoclastic bone resorption and suppress bone formation. Differentiation, maturation, activation, and survival of osteoclasts at the bone–implant interface are under the control of the receptor activator of nuclear factor kappa-Β ligand (RANKL)-dependent pathways, and the transcription factors like nuclear factor κB (NF-κB) and activator protein-1 (AP-1). Mechanical factors such as prosthetic micromotion and oscillations in fluid pressures also contribute to PPOL. The treatment for progressive PPOL is only surgical. In order to mitigate ongoing loss of host bone, a number of non-operative approaches have been proposed. However, except for the use of bisphosphonates in selected cases, none are evidence based. To date, the most successful and effective approach to preventing PPOL is usage of wear-resistant bearing couples in combination with advanced implant designs, reducing the load of metallic and polymer particles. These innovations have significantly decreased the revision rate due to AL and PPOL in the last decade.


2006 ◽  
Vol 69 (6) ◽  
pp. 2027-2036 ◽  
Author(s):  
Tamás Letoha ◽  
Erzsébet Kusz ◽  
Gábor Pápai ◽  
Annamária Szabolcs ◽  
József Kaszaki ◽  
...  

2022 ◽  
Author(s):  
Zhuo-yue Song ◽  
Mengru Zhu ◽  
Jun Wu ◽  
Tian Yu ◽  
Yao Chen ◽  
...  

The effects of Cucumaria frondosa polysaccharides (CFP) on renal interstitial fibrosis via regulating phosphatidylinositol-3-hydroxykinase/protein kinase-B/Nuclear factor-κB (PI3K/AKT/NF-κB) signaling pathway were investigated in vivo and in vitro in this research. A...


2020 ◽  
Author(s):  
Mehdi Hajian ◽  
Farnoosh Jafarpour ◽  
Sayed Morteza Aghamiri ◽  
Shiva Rouhollahi Varnosfaderani ◽  
Mohsen Rahimi ◽  
...  

Abstract Background: The ingredients of embryo culture media developed by different companies are disclosed. Thus, it is impossible to determine which ingredients might be responsible for differences in pre-and post-implantation embryo development. To address this gap, we performed an experiment to compare two embryo culture media, namely, SOF and commercial BO, on pre- and post-implantation development of cloned Sannen goat embryos. Cumulus oocyte complexes derived from slaughterhouse ovaries were used for in vitro embryo production . In vitro development of IVF, parthenogenetic and SCNT embryos were assessed in both BO and SOF media. The expression of 16 genes, including AKT , OCT4 , SOX2 , BMPR1 , FGFR4 , CDC25 , CDX2 , GCN5 , PCAF , FOXD3 , SMAD5 , FZD , LIFR1 , CTNNB , ERK1 , and IFNT , belonging to 7 important pathways, i.e. pluripotency, FGF, TGFβ, cell cycle and proliferation, histone transferase, trophectoderm, and WNT, were examined in the goat SCNT and IVF blastocysts from both BO and SOF media. Results: The blastocyst rate in BO medium was significantly higher than that of the SOF medium in SCNT embryos ( P < 0.05). All of the genes examined showed increased expression levels in SCNT embryos compared to IVF embryos. In the IVF group, OCT4 , BMPR1 , and GCN5 showed significantly higher expression in the SOF medium compared to the BO medium. In this group, AKT , FGFR4 , SOX2 showed significantly lower expression in the SOF medium compared to the BO medium. In the SCNT group, FGFR4 , GCN5 , FZD , CTNNB , BMPR1 , and FGFR4 showed significantly higher expression in SOF medium compared to BO medium. In vivo development did not differ significantly between the two groups. Conclusions: Based on these results, we concluded that the limited information available on the allocations of ICM and TE cells in SCNT embryos and embryo-specific gene expression may be the major drawback IVC medium and an impediment to successful animal cloning.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 479 ◽  
Author(s):  
Agnieszka Smieszek ◽  
Klaudia Marcinkowska ◽  
Ariadna Pielok ◽  
Mateusz Sikora ◽  
Lukas Valihrach ◽  
...  

MiR-21 is being gradually more and more recognized as a molecule regulating bone tissue homeostasis. However, its function is not fully understood due to the dual role of miR-21 on bone-forming and bone-resorbing cells. In this study, we investigated the impact of miR-21 inhibition on pre-osteoblastic cells differentiation and paracrine signaling towards pre-osteoclasts using indirect co-culture model of mouse pre-osteoblast (MC3T3) and pre-osteoclast (4B12) cell lines. The inhibition of miR-21 in MC3T3 cells (MC3T3inh21) modulated expression of genes encoding osteogenic markers including collagen type I (Coll-1), osteocalcin (Ocl), osteopontin (Opn), and runt-related transcription factor 2 (Runx-2). Inhibition of miR-21 in osteogenic cultures of MC3T3 also inflected the synthesis of OPN protein which is essential for proper mineralization of extracellular matrix (ECM) and anchoring osteoclasts to the bones. Furthermore, it was shown that in osteoblasts miR-21 regulates expression of factors that are vital for survival of pre-osteoclast, such as receptor activator of nuclear factor κB ligand (RANKL). The pre-osteoclast cultured with MC3T3inh21 cells was characterized by lowered expression of several markers associated with osteoclasts’ differentiation, foremost tartrate-resistant acid phosphatase (Trap) but also receptor activator of nuclear factor-κB ligand (Rank), cathepsin K (Ctsk), carbonic anhydrase II (CaII), and matrix metalloproteinase (Mmp-9). Collectively, our data indicate that the inhibition of miR-21 in MC3T3 cells impairs the differentiation and ECM mineralization as well as influences paracrine signaling leading to decreased viability of pre-osteoclasts.


Sign in / Sign up

Export Citation Format

Share Document