Improvement of the technology for processing siderite ore from the Bakal deposit

2021 ◽  
Vol 27 (4) ◽  
pp. 6-12
Author(s):  
Е. Degodya ◽  
◽  
N. Sedinkina ◽  
О. Shavakuleva ◽  
N. Gmyzina ◽  
...  

The Urals is one of the unique iron ore provinces of the world, including all the variety of iron ores. Siderite ores are represented by the Bakal group of deposits, in which siderite in mineralogical terms is not a chemically pure iron carbonate, but has an isomorphic admixture of magnesium and calcium, forming sideroplesite and pistomesite. The main iron ore mineral of the siderite ore of this deposit is an isomorphic mixture of iron, magnesium and manganese carbonates, which occur in different quantitative ratios. A scheme for ore dressing is proposed, which includes crushing to a size of 10-0 mm and dry magnetic separation in a suspended state at a magnetic field strength of 52 k/m. The study of dry magnetic separation of siderite ore was carried out on a suspended separator with a constant magnetic field and on an electromagnetic separator 138T-SEM. The resulting magnetic fraction is sent to the baking, subsequent crushing to a size of 2-0 mm and dry magnetic separation in the suspended state. To increase the mass fraction of iron and reduce the mass fraction of magnesium oxide, the magnetic fraction is sent for grinding and wet magnetic separation. The results of the experiments have showed that the enrichment using high-intensity dry magnetic separation of siderite ore from various sections of the deposit, the mass fraction of MgO decreased from 9.4-12.3% to 8.0-10.1%, and the mass fraction of iron increased from 28.8-33.4% to 31.4-40.8%. As a result, a product with a mass fraction of iron 59.3-60.1% and magnesium oxide 10.0-11.3% has been obtained. The developed enrichment technology allows us to obtain conditioned raw materials, which can serve as a promising raw material for PJSC Magnitogorsk Iron and Steel Works (PJSC MMK)

2019 ◽  
Vol 9 (10) ◽  
pp. 2001
Author(s):  
Vladimir Kochemirovsky ◽  
Svetlanav Kochemirovskaia ◽  
Michael Malygin ◽  
Alexey Kuzmin ◽  
Maxim Novomlinsky ◽  
...  

The development of an algorithm to automate the process of measuring the magnetic properties of macroscopic objects in motion is an important problem in various industries, especially in ferrous metallurgy and at factories where ferrous scrap is a strategic raw material. The parameter that requires work control is the hidden mass fraction of a non-magnetic substance that is present in the ferromagnetic raw material. The solution to this problem has no prototypes. In our work, a simple measuring device and a mathematical algorithm for calculating the mass fraction of the non-magnetic fraction in a strongly magnetic matrix were developed. The device is an inductance coil, in which the angle of the electromagnet losses is related to the mass of the magnetic material moving the coil. The magnitude of the instantaneous values of the lost angle integral was compared with the result of weighing the object on scales. This allowed us to calculate the proportion of the magnetic and non-magnetic fractions. The use of this prototype is herein illustrated. The experimental results of the determination of the magnetic-fractional composition depending on the mass of scrap metal and its bulk and the magnetic characteristics are presented.


2012 ◽  
Vol 549 ◽  
pp. 998-1001
Author(s):  
Si Qing Liu ◽  
Peng Li ◽  
Shu Ming Wen ◽  
Dian Wen Liu

Large amount of sourrounding rocks in Jianshui China has been discarded for many years, and the “rock” is characterized by Cu-Fe polymetallic constituents and of low grade. According to the results of chemical and phase analysis as well as the mineralogy, a joint pocess of flotation and magnetic separation was proposed and used to process the ore. Flotation results show that the combined processing technology is efficient in utilizing the low grade rocks. A copper concentrate assaying 20.68% Cu at the recovery of 80.11% can be obtained, when the raw material assays 0.79% Cu.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1411
Author(s):  
Filip Kovár ◽  
Lucie Bartoňová

Separation of coal ash into magnetic and non-magnetic fractions facilitates their utilization when processed separately. Due to desulphurization additives added to coal during the fluidised-bed combustion, non-magnetic fractions often contain elevated CaO levels (while magnetic concentrates are typically rich in Fe2O3). Both CaO and Fe2O3 are known for their ability to bind As during the combustion, whose distribution is a crucial parameter in terms of proper utilization of these fractions. Therefore, the study deals with the As partitioning within magnetic and non-magnetic fractions of fluidized-bed coal combustion ashes. Two different (successive) procedures of dry magnetic separation were used to separate each ash into strongly magnetic, less magnetic, and a non-magnetic fraction. Due to their optimal utilization, the concentrations of As and other target elements in these fractions were evaluated and compared. Magnetic concentrates from the first separation step (in vibrofluidized state) contained 60–70% Fe2O3, magnetic concentrates separated manually out of the residues after the first separation contained 26–41% Fe2O3, and the non-magnetic residues contained 2.4–3.5% Fe2O3. Arsenic levels were the highest in the non-magnetic residues and gradually decreased with the increasing Fe2O3 content in the magnetic fractions. The dominant As association in the studied samples was to CaO (r = +0.909) and with SO3 (r = +0.906) whereas its joint occurrence with Fe2O3 was improbable (r = −0.834).


2020 ◽  
Vol 56 (1) ◽  
pp. 47-58
Author(s):  
A. Messai ◽  
A. Idres ◽  
J.M. Menendez-Aguado

The recent developments of steel and iron industries generated a huge consumption of iron ores which has attracted much attention for utilizing low-grade iron resources to satisfy this increasing demand. The present study focuses on the characterization and enrichment of the low-grade iron ores from Rouina deposit-Ain Defla-. Currently, the ore is used in the cement industry because it is considered a low-grade iron ore. After the sampling process, a physico-chemical and mineralogical characterization was carried out and the results revealed that the sample consists of hematite, limonite and goethite as major opaque oxide minerals whereas silicates as well as clays form the gangue minerals in the sample. The average grade of FeTotal, SiO2 and Al2O3 contents in the raw material collected from the mine of the case study are 30.85%, 23.12% and 7.77% respectively. Processes involving combination of classification, washing and dry high-intensity magnetic separation were carried out to upgrade the low-grade iron ore sample to make it suitable as a marketable product. The sample was first ground and each closed size sieve fractions were subjected to washing followed by drying than dry high intensity magnetic separation and it was observed that limited upgradation is possible. As a result, it was possible to obtain a magnetic concentrate of 54.09% with a recovery degree of 89.30% and yield of 62.82% using a magnetic field intensity equal to 2.4 Tesla at the size fraction [-0.125 +0.063 mm].


2014 ◽  
Vol 584-586 ◽  
pp. 1097-1102 ◽  
Author(s):  
Qi Li ◽  
Yan Xin Chen ◽  
Qiang Song ◽  
Yan Fei Yao

Aiming at the disadvantages of traditional magnetic roasting process, suspension calcining process was suggested to dispose refractory iron ore. The experiment indicated that under the conditions of 750°C~850°C, CO volume percentage was 1%, the limonite and siderite could efficiently transformation into magnetite, which only needed 10~20 secs. Tests of roasting-magnetic separation could attained results as: concentrate iron grade be 49.26%, recovery of iron be 87.28%.


2012 ◽  
Vol 454 ◽  
pp. 227-230
Author(s):  
Lin Li ◽  
Xian Jun Lu ◽  
Jun Qiu

The results show that under the condition of grinding fineness(-200 mesh content) of 52.88% and magnetic field intensity of 0.2T, the index of concentrate yield is 13.25%, concentrate grade is 58.75% and concentrate recovery is 57.32% with preconcentration technology by magnetic separation.


2015 ◽  
Vol 15 ◽  
pp. 160-166 ◽  
Author(s):  
A.M. Ezhov ◽  
Y.B. Shvaljov

2013 ◽  
Vol 826 ◽  
pp. 126-129
Author(s):  
Ru Wang ◽  
Yue Xin Han ◽  
Yan Jun Li ◽  
Yu Shu Zhang

Suspension roasting furnace was used as the reactor of magnetic roasting of fine grained siderite, and the N2 was used as the conveying gas. The results show that, the siderite ore be roasted at the conditions of gas velocity is 1.7m/s, and the roasted time is 12.35s, according to magnetic separation can obtained iron concentrate grade is 65.04%, and recovery rate is 93.03%.


Author(s):  
N. V. Sedinkina ◽  
O. E. Gorlova ◽  
N. V. Gmyzina ◽  
E. Yu. Degodya

Dry magnetic separation (DMS) enables to separate the non-magnetic fraction of iron ores at the initial stage of their concentration and therefore to decrease cost of their further processing. However, a considerable amount of metal is lost in DMS tails at that. The efficiency of DMS considerably depends on difference between the upper and lower limits of the ore coarseness) ore coarseness range), delivered for concentration. At the Magnitogorsk steel-works crushing and concentration plant No. 5 this range is from 50 mm up to 15 mm. To determine the optimal ore size, delivered to DMS, studies accomplished to determine the specific magnetic susceptibility of the magnetite and the burden for the magnetite ore of Maly Kuibas deposit. After the study of different size iron ore separation, a reasonability of the DMS feed size decreasing down to 30–7 mm shown. A possibility to obtain additional product of 7–0 mm size determined, suitable for sintering. It will enable to decrease the amount of material, delivered for crushing and wet magnetic separation, as well as to decrease expenses for transporting and storage of wet separation tails. Peculiarities of fine magnetite ore processing by DMS in a suspended state considered, optimal parameters of the separator determined and its high efficiency for magnetite ore of 7–0 mm size concentration shown.


2011 ◽  
Vol 383-390 ◽  
pp. 911-915 ◽  
Author(s):  
Hui Fen Yang ◽  
Chun Ge Dang ◽  
Wei Xu

Geopolymers are man-made aluminosilicate materials with many exceptional properties. The preparation of geopolymer, using SDRMS as main raw material, lime (CaO) and gypsum (CaSO4ּ2H2O) as activators in analytical grade, was carried out, and the hydration products of which were characterized by XRD and SEM simultaneously in this study. The results revealed that compressive strength of geopolymer paste obtained by the combined excitation of lime and gypsum, was higher than that obtained by only excitation of lime. The former was in the range of 46-70 MPa, the latter was 5–28 MPa after 28d maintenance of geopolymer paste. The highest strength of 70MPa was obtained when the weight ratio of SDRMS/ lime/ gypsum was at 70:20:10 in the geopolymer paste. By the combined excitation of lime and gypsum, the SiO2 and Al2O3 in SDRMS were changed into the hydrates of ettringite, gismondine, killalaite and other based on XRD, which were observed with the acupuncture-like, fibrous, tabular and dendritic microstructure based on SEM.


Sign in / Sign up

Export Citation Format

Share Document