scholarly journals Study of a possibility of enrichment of fine-crushed magnetite ore by dry magnetic separation

Author(s):  
N. V. Sedinkina ◽  
O. E. Gorlova ◽  
N. V. Gmyzina ◽  
E. Yu. Degodya

Dry magnetic separation (DMS) enables to separate the non-magnetic fraction of iron ores at the initial stage of their concentration and therefore to decrease cost of their further processing. However, a considerable amount of metal is lost in DMS tails at that. The efficiency of DMS considerably depends on difference between the upper and lower limits of the ore coarseness) ore coarseness range), delivered for concentration. At the Magnitogorsk steel-works crushing and concentration plant No. 5 this range is from 50 mm up to 15 mm. To determine the optimal ore size, delivered to DMS, studies accomplished to determine the specific magnetic susceptibility of the magnetite and the burden for the magnetite ore of Maly Kuibas deposit. After the study of different size iron ore separation, a reasonability of the DMS feed size decreasing down to 30–7 mm shown. A possibility to obtain additional product of 7–0 mm size determined, suitable for sintering. It will enable to decrease the amount of material, delivered for crushing and wet magnetic separation, as well as to decrease expenses for transporting and storage of wet separation tails. Peculiarities of fine magnetite ore processing by DMS in a suspended state considered, optimal parameters of the separator determined and its high efficiency for magnetite ore of 7–0 mm size concentration shown.

Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 19
Author(s):  
Ivan Silin ◽  
Devrim Gürsel ◽  
Christian Büchter ◽  
Lars Weitkämper ◽  
Hermann Wotruba

Eudialyte ores from Norra Kärr (Sweden) and Kringlerne (Greenland) are considered a potential source of rare-earth elements (REE) for the development of a sustainable REE industry outside China. Magnetic separation is successfully applicated to recover eudialyte as a magnetic fraction. In the case of the Norra Kärr deposit, up to 20% of the REE and up to 40% of the Zr are lost during mineral processing in the non-magnetic fraction. Zr and REE are associated with non-magnetic minerals such as catapleiite, low- or non-magnetic eudialyte species, and both their intergrowths. Besides zirconosilicates such as catapleiite and eudialyte, the non-magnetic fraction has valuable and already-liberated minerals such as alkali feldspars and nepheline, which should not be considered as tailings. In this investigation, a possible way to recover REE bearing zirconosilicates from the non-magnetic fraction using flotation is presented. First, a low-grade eudialyte concentrate (1.8% Zr, 0.94% REE) from ground ore was obtained using magnetic separation. The non-magnetic fraction was then treated using froth flotation, and a Zr-REE bearing product (9% Zr, 1.5% REE) was obtained as froth product. For this purpose, phosphoric acid esters were used as selective collectors for zirconosilicates at a pH between 3.5 and 4.5. The reagent regime could be proposed not only to recover Zr- and REE-bearing minerals, but also simultaneously to remove Fe, Ti, and other colored impurities from the nepheline-feldspar product and to minimize the tailings volume.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1411
Author(s):  
Filip Kovár ◽  
Lucie Bartoňová

Separation of coal ash into magnetic and non-magnetic fractions facilitates their utilization when processed separately. Due to desulphurization additives added to coal during the fluidised-bed combustion, non-magnetic fractions often contain elevated CaO levels (while magnetic concentrates are typically rich in Fe2O3). Both CaO and Fe2O3 are known for their ability to bind As during the combustion, whose distribution is a crucial parameter in terms of proper utilization of these fractions. Therefore, the study deals with the As partitioning within magnetic and non-magnetic fractions of fluidized-bed coal combustion ashes. Two different (successive) procedures of dry magnetic separation were used to separate each ash into strongly magnetic, less magnetic, and a non-magnetic fraction. Due to their optimal utilization, the concentrations of As and other target elements in these fractions were evaluated and compared. Magnetic concentrates from the first separation step (in vibrofluidized state) contained 60–70% Fe2O3, magnetic concentrates separated manually out of the residues after the first separation contained 26–41% Fe2O3, and the non-magnetic residues contained 2.4–3.5% Fe2O3. Arsenic levels were the highest in the non-magnetic residues and gradually decreased with the increasing Fe2O3 content in the magnetic fractions. The dominant As association in the studied samples was to CaO (r = +0.909) and with SO3 (r = +0.906) whereas its joint occurrence with Fe2O3 was improbable (r = −0.834).


2021 ◽  
Vol 27 (4) ◽  
pp. 6-12
Author(s):  
Е. Degodya ◽  
◽  
N. Sedinkina ◽  
О. Shavakuleva ◽  
N. Gmyzina ◽  
...  

The Urals is one of the unique iron ore provinces of the world, including all the variety of iron ores. Siderite ores are represented by the Bakal group of deposits, in which siderite in mineralogical terms is not a chemically pure iron carbonate, but has an isomorphic admixture of magnesium and calcium, forming sideroplesite and pistomesite. The main iron ore mineral of the siderite ore of this deposit is an isomorphic mixture of iron, magnesium and manganese carbonates, which occur in different quantitative ratios. A scheme for ore dressing is proposed, which includes crushing to a size of 10-0 mm and dry magnetic separation in a suspended state at a magnetic field strength of 52 k/m. The study of dry magnetic separation of siderite ore was carried out on a suspended separator with a constant magnetic field and on an electromagnetic separator 138T-SEM. The resulting magnetic fraction is sent to the baking, subsequent crushing to a size of 2-0 mm and dry magnetic separation in the suspended state. To increase the mass fraction of iron and reduce the mass fraction of magnesium oxide, the magnetic fraction is sent for grinding and wet magnetic separation. The results of the experiments have showed that the enrichment using high-intensity dry magnetic separation of siderite ore from various sections of the deposit, the mass fraction of MgO decreased from 9.4-12.3% to 8.0-10.1%, and the mass fraction of iron increased from 28.8-33.4% to 31.4-40.8%. As a result, a product with a mass fraction of iron 59.3-60.1% and magnesium oxide 10.0-11.3% has been obtained. The developed enrichment technology allows us to obtain conditioned raw materials, which can serve as a promising raw material for PJSC Magnitogorsk Iron and Steel Works (PJSC MMK)


2020 ◽  
pp. 15-20
Author(s):  
S. V. Tereshchenko ◽  
◽  
D. N. Shibaeva ◽  
S. A. Alekseeva ◽  
A. A. Kompanchenko ◽  
...  

On the example of a sample of ferruginous quartzites from the Olenegorskoye deposit, the possibility of preliminary concentration by dry magnetic separation (DMS) has been established. The mineralogical and petrographic studies have shown that, in terms of their textural and structural features and mineral composition, ferruginous quartzites may be divided into two types, differing in the amount of hematite included in their composition, which indicates the possibility of using DMS to generate the following three separation products: magnetite, hematite-magnetite, and rock. DMS with the use of a laboratory drum magnetic separator allowed selecting the upper size limit of 80 mm for lumps entering the separation. At the same time, 24.7 to 26.0 % of all waste and low-mineralized rocks with the mass fraction of Fetot of 4.51 to 6.07 % are transferred to the non-magnetic fraction during the separation of classes of –80+50 and –50+25 mm. For the size class of –25+10 mm, the yield and Fetot values are within the same limits. It has been shown that sulfidecontaining rocks and rocks of increased strength (with the strength coefficient of at least 23) are separated into the non-magnetic fraction. The strength of ferruginous quartzites does not exceed 20. This rock strength ratio confirms improved crushing and grinding efficiency. The possibility of separation of the magnetic fraction with the particle size of –80+25 mm into the following products has been established: the magnetite-hematite product (MF-1 + MF-2) with the mass fractions of Femagn 43.3% and Fehem 14.9 %, and the predominantly hematite product (MF-3 + MF-4) with the mass fractions of Femagn 1.1 % and Fehem 67.9 %.


Author(s):  
Unursaikhan B ◽  
Baasanjav D ◽  
Sugir-Erdene N ◽  
Orgilbayar B ◽  
Sukhbat S ◽  
...  

The iron ore sample is processed in laboratory conditions with methods of both dry and wet magnetic separation. The particle size of the processed sample was 1 mm electric power of dry magnetic separation 0.2A-0.6A, and the rotation number of the separation drum was chosen to be 32 per/min. The most suitable procedures to get standardized concentrate are optimized through considering the following facts that the duration of wet magnetic separation is 20, 30, 40, 50 minutes, classification yield is 43.50 %, 55.70%, 72.70%, 85.20% for 0.074 mm crushed particles, and the electric power is 1A-5A of the wet magnetic drum. As a result of this process, the initial Fe concentration of the primary ore has increased from 43.59% to 65.60% and the recovery arose to 96.93%. Therefore, the combination methods of dry and wet iron ore separation are applicable for processing of iron concentrate with higher pureness that meets the requirements of metallurgical industries. Чандмань-Уул ордын төмрийн хүдрийг хуурай соронзон болон нойтон соронзон аргаар баяжуулах технологийн судалгаа Хураангуй: Төмрийн хүдрийг лабораторийн нөхцөлд хуурай болон нойтон соронзон баяжуулалтын хосолсон аргаар баяжуулсан. Нойтон соронзон баяжуулалтын нунтаглалтын хугацаа 20, 30, 40, 50 мин, 0.074 мм-ийн ангилал харгалзан 43.5%, 55.7%,72.7%, 85.2%-тай байхад соронзон орны 1-5А гүйдлийн хүч зэргээс хамааруулан стандарт баяжмал гарган авах технологийн зохистой горимуудыг тогтоосон. Анхдагч хүдэр дэх төмрийн агуулга 43.59% байсан бол туршилт судалгааны үр дүнд төмрийн агуулга 65.60% болж 96.93%-ийн металл авалттай төмрийн баяжмал гарган авсан. Иймд хуурай, нойтон соронзон баяжуулалт хосолсон схемээр төмрийн хүдрийг баяжуулах нь цаашид металлургийн үйлдвэрийн шаардлага хангасан өндөр цэвэршилттэй төмрийн баяжмал гарган авах боломжтой гэж үзэв. Түлхүүр үг: Төмрийн хүдэр, хуурай соронзон баяжуулалт, нойтон соронзон баяжуулалт, төмрийн баяжмал


2020 ◽  
Vol 17 (34) ◽  
pp. 700-710
Author(s):  
Kanat Sh CHOKIN ◽  
Abdraman I YEDILBAYEV ◽  
Baimurat A YEDILBAYEV ◽  
Vladimir D YUGAY

The relevance of the paper is that dry magnetic separation (DMS) is the main beneficiation method of magnetite ores. The lack of efficient industrial-grade machines and apparatus for separating fine-grained magnetite ores means that DMS is used mainly as a pre-concentration operation for fairly large classes. The aim of the research is to study the possibility of using a new magnetic separator model in the process of dry beneficiation of magnetite ore from the Bapy deposit. This paper presents theoretical and experimental studies of a new model of a magnetic separator. The mathematical modeling of the magnetic separation process of the device was carried out to evaluate the parameters in accordance with which a laboratory separator was subsequently manufactured. For the experimental study of the properties of this magnetic system, a laboratory magnetic separator was built. The possibility of using a new magnetic separator in the process of dry beneficiation of magnetite ore from the Bapy deposit was investigated. The industrial scheme being implemented consists in ore crushing and two stage dressing on dry drum magnetic separators. The study of beneficiation indicators of the magnetic separator was carried out using iron ore of the Bapy deposit, which is mono-mineral magnetite. For the study, mixtures of the minus 0.1 mm class were selected with the iron content α = 50% and α = 40%. As a result of the research, beneficiation indicators were obtained on a laboratory scale. Therefore, the improvement of the beneficiation scheme is reduced to the isolation of a small product and its subsequent beneficiation using a new model of magnetic separator. Thus, the presented magnetic separator is suitable for dry processing of crushed magnetite ore.


Author(s):  
Xiang Zhang ◽  
Kongzhao Su ◽  
Aya Mohamed ◽  
Caiping Liu ◽  
Qing-Fu Sun ◽  
...  

Photo-assisted Li-organic batteries provide an attractive approach for solar energy conversion and storage, while the challenge lies in the design of high-efficiency organic cathodes. Herein, a charge-separated and redox-active C60@porous...


Author(s):  
Guilhermina Torrao ◽  
Robert Carlino ◽  
Steve L. Hoeffner ◽  
James D. Navratil

Plutonium (239/240Pu) contamination in soils is an environmental concern at many U.S. Department of Energy (DOE) sites. Remediation actions have been attempted using different technologies, and clean-up plans have been implemented at several sites, such as the Nevada Test Site (NTS). During the 1950’s and early 1960’s, nuclear weapons testing at and near the NTS resulted in soil contaminated with plutonium particles. Clean-up efforts are continuing using conventional remediation techniques. However, the DOE desires to obtain technologies that can further reduce risks, reduce clean-up costs, and reduce the volume of contaminated soil for disposal. Low levels of plutonium contamination are distributed somewhat uniformly throughout the NTS soils and, as a result, it is difficult to obtain volume reductions above 70%. The subject of this research was to characterize the plutonium-contaminated soil from the Tonopah Test Range (TTR) north of the NTS. In order to select remediation methods, it is important to gain a better understanding of how plutonium is bound to the contaminated soil; thus, size separation, magnetic separation, and the sequential extraction (SE) methods were used for this purpose. The SE method consisted of targeting five operationally defined geochemical phases: ion exchangeable, bound to carbonates, bound to iron and manganese oxides (reducible), bound to organic matter, and resistant. Radiometric measurements were used to determine plutonium in each of these defined phases in the soil. Selected stable elements were also determined, to compare the operation of the SE method to other investigators. The SE experiments were performed with two types of samples: soil without heat treatment and soil with heat treatment. The MF treatment was used to destroy the organic content in the soil so as to further evaluate the SE procedure. Particle size analysis indicated that approximately 37% of the TTR soil by weight was larger than 300 micrometers and this fraction contained little plutonium, < 100 pCi/g. Thus, size separation may be useful as part of a remediation process. Magnetic separation tests showed that the magnetic fraction of the TTR soils is very small, and the non-magnetic fraction still contained the majority of the plutonium. Thus, a magnetic separation step in a treatment process would not be useful. Following SE, analysis results of the stable elements agreed with reported values. The SE results also indicated an association of plutonium with the organic and resistant defined phases. The main change in 239/240Pu distribution following heat treatment was an increase of plutonium recovery in the reducible phase. The SE results showed that fairly aggressive chemical treatment would be required if leaching were part of a remediation process.


Sign in / Sign up

Export Citation Format

Share Document