Wavefront Construction (WF) Ray Tracing in Tetrahedral Models -Application to 3-D Traveltime and Ray Path Computations.

1997 ◽  
Author(s):  
Zhaobo Meng ◽  
Norm Bleistein
2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Hyun Wook Moon ◽  
Woojoong Kim ◽  
Sewoong Kwon ◽  
Jaeheung Kim ◽  
Young Joong Yoon

A simple and exact closed-form equation to determine a penetrated ray path in a ray tracing is proposed for an accurate channel prediction in indoor environments. Whereas the penetrated ray path in a conventional ray tracing is treated as a straight line without refraction, the proposed method is able to consider refraction through the wall in the penetrated ray path. Hence, it improves the accuracy in ray tracing simulation. To verify the validation of the proposed method, the simulated results of conventional method, approximate method, and proposed method are compared with the measured results. The comparison shows that the proposed method is in better agreement with the measured results than the conventional method and approximate method, especially in high frequency bands.


2008 ◽  
Author(s):  
Lorenzo Casasanta ◽  
Giuseppe Drufuca ◽  
Clara Andreoletti ◽  
Jacopo Panizzardi

2021 ◽  
Vol 72 ◽  
pp. 113-122
Author(s):  
Amir Mustaqim Majdi ◽  
◽  
Seyed Yaser Moussavi Alashloo ◽  
Nik Nur Anis Amalina Nik Mohd Hassan ◽  
Abdul Rahim Md Arshad ◽  
...  

Traveltime is one of the propagating wave’s components. As the wave propagates further, the traveltime increases. It can be computed by solving wave equation of the ray path or the eikonal wave equation. Accurate method of computing traveltimes will give a significant impact on enhancing the output of seismic forward modeling and migration. In seismic forward modeling, computation of the wave’s traveltime locally by ray tracing method leads to low resolution of the resulting seismic image, especially when the subsurface is having a complex geology. However, computing the wave’s traveltime with a gridding scheme by finite difference methods able to overcomes the problem. This paper aims to discuss the ability of ray tracing and fast marching method of finite difference in obtaining a seismic image that have more similarity with its subsurface model. We illustrated the results of the traveltime computation by both methods in form of ray path projection and wavefront. We employed these methods in forward modeling and compared both resulting seismic images. Seismic migration is executed as a part of quality control (QC). We used a synthetic velocity model which based on a part of Malay Basin geology structure. Our findings shows that the seismic images produced by the application of fast marching finite difference method has better resolution than ray tracing method especially on deeper part of subsurface model.


1980 ◽  
Vol 70 (4) ◽  
pp. 1137-1148 ◽  
Author(s):  
C. H. Thurber ◽  
W. L. Ellsworth

abstract The determination of local earthquake hypocenters and orgin times from first-P-arrival times by Geiger's method requires a technique for finding the minimum travel time (and derivatives) between the source and the station. Sophisticated ray tracing techniques have been developed for this purpose for use in complex velocity structures. Unfortunately, the two common techniques, shooting and bending, are generally prohibitively expensive for routine use in data analysis. The bending method is also particularly vulnerable to the problem of local minima in travel time. A method has been developed known as the ray initializer, which can be used to circumvent these problems in many cases. First, the technique can find a reasonable estimate of the minimum-time ray path in a quick and efficient manner. The velocity in a region local to the source and receiver is laterally averaged to yield an approximate layered velocity model. One-dimensional ray tracing techniques are used to find the minimum-time path for this layered structure. The ray path estimate can then be used as the starting path in a bending routine, a procedure resulting in more rapid convergence and the avoidance of local minima. Second, the travel time found by numerical integration along the estimated ray path is an excellent approximation to the actual travel time. Thus, in many cases, the ray initializer can be substituted for a three-dimensional ray tracing routine with a tremendous increase in efficiency and only a small loss in accuracy. It is found that the location of an explosion, derived using the ray initializer, is nearly identical to a complete ray tracing solution, even for a highly complex velocity structure.


2013 ◽  
Vol 21 (04) ◽  
pp. 1350015 ◽  
Author(s):  
YOUNGMIN CHOO ◽  
WOOJAE SEONG

A ray tracing algorithm for moving surfaces is derived to enable the analysis of surface movement effects. For this, a ray tracing algorithm for frozen surface is modified. By comparing the results from frozen and moving surface ray models allows effects of a moving surface to be investigated. The surface movement effects can be seen with the difference between channel impulse responses from the frozen and moving surface ray models. For an investigation of ray path dependence of the surface movement effects, delay times of surface reflective paths from the two ray models are observed according to transmitted ping time. As the ray path from the source to surface gets longer, difference of travel time results from the two ray models increase. This fact indicates that surface movement effects depend on ray path, in particular travel time until a ray meets a surface.


2016 ◽  
Vol 138 (2) ◽  
Author(s):  
Travis Wiens

This paper presents a numerical method of tracing of sound or other refracted rays through a medium with arbitrarily varying refractive index. The method uses a radial basis function (RBF) network to define the refractive index of the medium, allowing continuous gradients to be determined analytically and the ray path to be solved using standard numerical ordinary differential equation (ODE) solution techniques.


2019 ◽  
Author(s):  
Oluwakemi Dare-Idowu ◽  
Igo Paulino ◽  
Cosme A. O. B. Figueiredo ◽  
Amauri F. Medeiros ◽  
Ricardo A. Buriti ◽  
...  

Abstract. On 08 April 2005, a strong gravity wave activity (more than 3 hours) was observed in São João do Cariri (7.4° S, 36.5° W). These waves propagated to the southeast and presented different spectral characteristics (wavelength, period and phase speed). Using OH airglow images, the parameters of 5 observed gravity waves were calculated; the wavelengths ranged from ~ 90 to 150 km, the periods from ~ 26 to 67 min and the phase speeds from 32 to 71 m/s. A reserve ray-tracing analysis was performed to investigate the likely sources of these waves. The ray-tracing database was composed of temperature profiles from NRLMSISE-00 model and SABER measurements and wind profiles from HWM-14 model and meteor radar data. According to the ray path, the likely source of these gravity waves was the Inter Tropical Convergence Zone with intense convective processes taking place in the northern part of the observatory. Also, the observed preferential propagation direction of the waves to the southeast could be explained using blocking diagrams, i.e., due to the wind filtering process.


2021 ◽  
Author(s):  
Tung-Cheng Ho ◽  
Shingo Watada ◽  
Kenji Satake

<p>We propose a ray-tracing method to solve the two-point boundary value problem for tsunamis based on the long-wave theory. In the long-wave theory, the tsunami wave velocity is proportional to the square root of water depth, which is available from global bathymetric atlases. Our method computes the shortest travel times starting from each of the two given points and calculates the local ray direction to trace the ray path. We utilize an explicit, non-iterative tracing scheme that exhibits robust results and applies to any tsunami-accessible locations, and the global-shortest travel-time path is derived. In simple and real bathymetry cases, our method demonstrates stable results with neglectable low uncertainties. The ray-tracing method is then applied to analyze the path of tsunamis from different directions to four important bays in Japan. The result shows that tsunami ray paths are significantly influenced by local bathymetry, and some crucial structures, such as trench and trough, behave as the primary routes of this region. Deploying stations near these routes will be most beneficial for tsunami early warning. The existing tsunami-observing system off the Honshu area works well for tsunamis from the east side but slightly deficient for tsunamis from the west side. The far-field ray tracing shows that tsunamis traveling from Chile to Japan through two main routes—one via north Hawaii and the other via the south— depending on the location of the source.</p>


2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Balamati Choudhury ◽  
Hema Singh ◽  
R. M. Jha

The radio-frequency (RF) field mapping and its analysis inside a space vehicle cabin, although of immense importance, represent a complex problem due to their inherent concavity. Further hybrid surface modeling required for such concave enclosures leads to ray proliferation, thereby making the problem computationally intractable. In this paper, space vehicle is modeled as a double-curvatured general paraboloid of revolution (GPOR) frustum, whose aft section is matched to an end-capped right circular cylinder. A 3D ray-tracing package is developed which involves a uniform ray-launching scheme, an intelligent scheme for ray bunching, and an adaptive reception algorithm for obtaining ray-path details inside the concave space vehicle. Due to nonavailability of image method for concave curvatured surfaces, the proposed ray-tracing method is validated with respect to the RF field build-up inside a closed lossy cuboid using image method. The RF field build-up within the space vehicle is determined using the details of ray paths and the material parameters. The results for RF field build-up inside a metal-backed dielectric space vehicle are compared with those of highly metallic one for parallel and perpendicular polarizations. The convergence of RF field within the vehicle is analyzed with respect to the propagation time and the number of bounces a ray undergoes before reaching the receiving point.


Sign in / Sign up

Export Citation Format

Share Document